

Feasibility study of $B^{\theta} \to \pi^{\theta}\pi^{\theta}$ at the Belle II Experiment

Fernando Abudinén

28. March, 2017

- 1 Time-dep. CP-Analysis
- 2 B^0 Selection and Efficiency
- 3 Toy MC Results
- 4 Extraction of ϕ_2 from $B \to \pi \pi$
- 5 Summary and Outlook

Max-Planck-Institut für Physik

Vertex of γ -Conversions in $B^0 \rightarrow \pi^0 \pi^0$

B^{θ} Reconstruction

- $$\begin{split} 1 & B^{0} \to \pi^{0}{}_{\gamma\gamma} \pi^{0}{}_{\gamma\gamma} \\ 2 & B^{0} \to \pi^{0}{}_{\mathsf{dal}} (\to e^{+}e^{-}\gamma) \pi^{0}{}_{\gamma\gamma} \\ 3 & B^{0} \to \pi^{0}{}_{\gamma_{\mathsf{c}}\gamma} (\to \gamma (\to e^{+}e^{-})\gamma) \pi^{0}{}_{\gamma\gamma} \end{split}$$
- Reconstruction of π^0 s:
 - γ Selection: $E_{\gamma} > 50$ MeV (Barrel) $E_{\gamma} > 100$ MeV (Front) $E_{\gamma} > 150$ MeV (Back)
 - e^{\pm} Selection: $d_0 < 0.25$ cm
 - At least one PXD hit (e^+ or e^-)
 - $m_{\pi^{\theta}} \in [105, 165] \text{ MeV} \sim \pm 2.5 \cdot \sigma_{m_{\pi^{\theta}}}$
 - $\blacksquare \ |\cos(\theta_{\rm helicity})| < 0.95$

4

B^{θ} Vertex Reconstruction

- Vertex Reconstruction with iptube constrain.
- If conversion in beam pipe and e[±] with PXD hits
- $\Rightarrow \ {\pi^{\theta}}_{\rm c} \ {\rm and} \ {\pi^{\theta}}_{\rm dal}$ kinematically indistinguishable.

- $\blacksquare ~ \tau_{\pi^{0}} \sim 0.9 ~ {\rm as} ~\cong ~ 0.1 ~ {\rm nm}$
- $\Rightarrow \pi^{\theta} \text{ Vertex} = B^{\theta} \text{ Vertex.}$
 - Check with MC truth.

 $\begin{aligned} & q \cdot r \\ & \varepsilon_{\text{Eff}}(\text{Belle II}) = 35\% \\ & \varepsilon_{\text{Eff}}(\text{Belle}) = 29\% \end{aligned}$

MC Flavor

Final Selection and Efficiency

•
$$m_{\rm bc} = \sqrt{{E_{\rm beam}^*}^2 - \mathbf{p}_{B^\theta}}$$

> 5.26 GeV/ c^2

- $\Delta E = E^*_{\text{beam}} E_{B^0}$ $\in [-0.3, 0.2] \text{ GeV}$
- Continuum Suppr. $y_{\rm FBDT} > 0.976$
- \Rightarrow Maximizes $\frac{n_{
 m sig}}{\sqrt{n_{
 m sig}+n_{
 m bkg}}}$
 - Flavor Dilution *r* > 0.1
 - Multiplicity $\lesssim 1.01$
- ⇒ Ranking according to Dilution

Decay. Channel	$rac{n_{acc}}{n_{gen}}$ [%]	$rac{n_{ m rec}}{n_{ m acc}}$ [%]	$rac{n_{ m rec}^{ m FS}}{n_{ m acc}}$ [%]
$B^0 \rightarrow \pi^0_{\ \rm dal} \pi^0_{\ \gamma\gamma}$	2.0	52.0	7.0
$B^0 \rightarrow \pi^0_{\gamma_c \gamma} \pi^0_{\gamma \gamma}$	3.0	48.8	4.0
Dal + Conv	5.0	50.1	5.2
$B^0 \rightarrow \pi^0_{\gamma\gamma} \pi^0_{\gamma\gamma}$	76.2	86.0	19.2

Decay. Channel	Purity [%]	$\frac{n_{\text{combin}}}{n_{\text{sig}} + n_{\text{combin}}}$ [%]
Dal + Conv	17.7	0.8
$B^0 \rightarrow \pi^0_{\ \gamma\gamma} \pi^0_{\ \gamma\gamma}$	15.8	1.0

$$\mathsf{Purity} = \frac{n_{\mathsf{sig}}}{n_{\mathsf{sig}} + n_{\mathsf{combin}} + n_{\mathsf{cont}} + n_{B\overline{B}}}$$

Toy MC Projections

\mathcal{A}_{CP} and \mathcal{S}_{CP} Pulls and LMU Statistical Uncertainties

Toy MC and \mathcal{A}_{CP} Pull and Uncertainty

 $\Rightarrow \text{ Extr. } \Delta \phi_2 \text{ through isospin analysis:}$ $A^{+-} = A(B \rightarrow \pi^+ \pi^-)$ $1 \frac{1}{\sqrt{2}} A^{+-} + A^{00} = A^{+0}$ $2 \frac{1}{\sqrt{2}} \bar{A}^{+-} + \bar{A}^{00} = \bar{A}^{-0}$

PhysRevLett.65.3381

$$\overline{A}_{00}$$

 $\frac{1}{\sqrt{2}}\overline{A}_{+}$ $\frac{1}{\sqrt{2}}A_{+}$ A_{00}
 $2\Delta\alpha$ $A_{+0} = \overline{A}_{-0}$

■ Isospin analysis input:

$$\mathcal{B}(B^0 \to \pi^+\pi^-), \ \mathcal{B}(B^0 \to \pi^0\pi^0), \ \mathcal{B}(B^+ \to \pi^+\pi^0),$$

 $\mathcal{A}_{CP}(B^0 \to \pi^+\pi^-), \ \mathcal{S}_{CP}(B^0 \to \pi^+\pi^-),$
 $\mathcal{A}_{CP}(B^0 \to \pi^0\pi^0), \ \left[\mathcal{S}_{CP}(B^0 \to \pi^0\pi^0)\right]$

12

Result of Isospin analysis

Statistical Uncertainties from Toy MC:

$$\Delta S_{\pi^0 \pi^0} = \pm 0.29,$$

 $\Delta A_{\pi^0 \pi^0} = \pm 0.03,$
 $\Delta B_{\pi^0 \pi^0} = \pm 0.04 \cdot 10^{-6}$

- Projection of Systematical Uncertainties: $\Delta S_{\pi^0 \pi^0} = \pm 0.03,$ $\Delta A_{\pi^0 \pi^0} = \pm 0.02,$ $\Delta B_{\pi^0 \pi^0} = \pm 0.04 \cdot 10^{-6}$
- Sensitivity on ϕ_2 : $S_{\pi^{\theta}\pi^{\theta}}$ will help to reduce ambiguities by factor 4.
- \Rightarrow Uncertainty should be extracted without $S_{\pi^{\theta}\pi^{\theta}}$.

Time of Propagation counter with 20 mm quartz bars MCP-PMT readout K_L^0/μ Detector (outside) RPC Plates and plastic scintillators with SiPM readout Superconducting Magnet

homogeneous field of $1.5\,\text{T}$

 $\begin{array}{l} \textbf{Electromagnetic Calorimeter} \\ \texttt{8000 Csl Crystals, 16} X_0 \\ \texttt{PMT/APD readout} \end{array}$

Pixel Vertex Detector 2 layer pixel detector (8MP) DEPFET technology

Silicon Vertex Detector 4 layer double sided strips 20-50 ns shaping time

Central Drift Chamber proportional wire drift chamber 15000 sense wires in 58 layers Aerogel RICH Proximity focusing RICH with silica aerogel

- a) If there is an event with $\gamma\text{-conversions}$
- \Rightarrow How Many?

b) How many Events have at least one γ -conversion?

Vertex in	Events $\%$
Beam Pipe	2.00 %
1st. PXD Layer	0.60 %
2nd. PXD Layer	0.50 %
Total inside PXD	3.10 %

c) ... and at least one $\gamma\text{-conversion}$ or one $\pi^{\theta} \to e^+e^-\gamma$ decay?

$$\begin{array}{c|c} \pi^0 \to e^+ e^- \gamma & 2.00 \% \\ \hline \textbf{Total} \ \pi^0 \cup \gamma & 5.05 \% \end{array}$$

Requirement: All converted γ in accept. and not converted in ECL

B0_FBDT_qrCombined:B0_deltae

Distribution of Continuum

Distribution on signal $B^0 \rightarrow \pi^0 \pi^0_{\rm dal}$

Pull and Uncertainties on Signal Yields

Systematic Uncertainties

$$\mathcal{B}(B^0 \to \pi^0 \pi^0)$$

 $\mathcal{A}_{\mathsf{CP}}(B^0 \to \pi^0 \pi^0)$

Source	${\tt Belle}^a$	$50\frac{1}{ab}$ [%]
Flavor Tagging ^b	0.034	0.0034
$B\overline{B}$ Bkg. Param.	0.06	0.008
Cont. Bkg. Param	0.08	0.010
Fit Bias	0.02	0.003
Total	0.12	0.01

^{*a*} Belle Draft M. Sevior ^{*b*} BaBar PRD 87 052009

Source	Belle ^a [%]	$50\frac{1}{ab}$ [%]
Signal Sel.	1.5	0.19
Cont. Bkg. Param	11.0	1.39
Off-res Cont. Bkg.	3.0	0.38
ΔE and m_{bc}	4.0	0.51
π^{0} det. eff.	4.4	0.56
$B\overline{B}$ Bkg. Param.	5	0.60
Luminosity	1.4	1.40
Rec. Conv. Ph.	1.0	0
Timing Cut	0.5	0.06
Fit Bias	1.0	0.13
Total	14.0	2.25

Systematic Uncertainties

$$\mathcal{B}(B^0 \to \pi^+\pi^-)$$

 $\mathcal{B}(B^+ \to \pi^+ \pi^0)$

Source	\texttt{Belle}^a [%]	$50\frac{1}{ab}$ [%]	Source	\texttt{Belle}^a [%]	$50\frac{1}{ab}$ [%]
Signal PDF	0.50	0.06	Signal PDF	0.73	0.09
$B\overline{B}$ Bkg. Param.	1.77	0.22	$B\overline{B}$ Bkg. Param.	4.53	0.57
Tracking	0.70	0.09	Tracking	0.70	0.09
Luminosity	1.37	1.37	Luminosity	1.37	1.37
Kpi PID	1.72	0.22	Kpi PID	0.86	0.11
Ratio Cut	0.24	0.03	Ratio Cut	0.92	0.12
MC Statistics	0.15	0.02	MC Statistics	0.17	0.02
Feed-accross	1.50	0.19	Feed-accross	1.19	0.15
PHOTOS	0.80	0.80	π^{0} det. eff.	4.00	0.51
Total	3.42	1.63	Total	6.52	1.59

 $^a\,$ Belle PRD 87 031103

Systematic Uncertainties

${\cal A}_{\sf CP}(B^0 o\pi^+\pi^-)$			$\mathcal{S}_{CP}(B^0 o \pi^+\pi^-)$			
Source	$Belle^a [10^{-2}]$	$50\frac{1}{ab}$ [%]	Source		$Belle^a [10^{-2}]$	$50\frac{1}{ab}$ [%]
Track Helix	0	0	Track H	elix	0.01	0.001
Δt Sel.	0.01	0.001	Δt Sel.		0.03	0.004
Missalign.	0.40	0.051	Missaligi	n.	0.20	0.025
Δz Bias	0.50	0.063	Δz Bias		0.40	0.051
IP Profile	0.13	0.016	IP Profil	IP Profile		0.151
Flavor Tagging	0.40	0.051	Flavor T	agging	0.31	0.039
m_d and $ au$	0.12	0.015	m_d and	au	0.09	0.011
Fit Bias	0.54	0.068	Fit Bias	Fit Bias		0.109
Tag-Side Int.	3.18	3.18	Tag-Side	e Int.	0.17	0.170
B_{tag} Track Sel.	0.30	0.038	B_{tag} Tra	ck Sel.	0.33	0.042
Vertex Sel.	0.37	0.047	Vertex S	Sel.	0.23	0.029
MC Shape	0.15	0.019	MC Sha	ре	0.19	0.024
Δt Res.	0.83	0.415	Δt Res.		2.02	1.010
Bkg. Shape	0.15	0.019	Bkg. Sha	аре	0.28	0.035
Bkg. NP. S.	0.37	0.047	Bkg. NP	Bkg. NP. S. 0.5		0.072
Total	3.48	3.21	Total		2.68	1.05

23 ^a Belle PRD 88 092003

Result of Isospin analysis

