Suche nach Dunkler Materie im Mono-Higgs-Kanal $(h \rightarrow b\bar{b})$ mit dem ATLAS Detektor am LHC

Rainer Röhrig, Betreuer: Patrick Rieck

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

DPG Münster - Frühjahrstagung 27.03.2017

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

GEFÖRDERT VOM

Einleitung: Suche nach Dunkler Materie im Mono-Higgs-Kanal

- Suche nach Ereignissen mit hoher fehlender transversaler Energie ($=E_T^{miss}$) in Assoziation mit dem Standardmodell-Higgs-Boson $(h \rightarrow b\bar{b})$
- \Rightarrow größtes Verzweigungsverhältnis ($h \rightarrow b\bar{b} \approx 57\%$)
- ▶ Signatur: 2 *b*-Jets, $m_{bb} \approx 125$ GeV und hohe E_{T}^{miss}

Signalmodell: Z'-2-Higgs-Dublett-Modell (arXiv:1312.2592)

- Massive Mediatoren: Z' und A (pseudoskalar)
- DM-Paarproduktion, $\chi \bar{\chi}$, und $S_{\chi} = \frac{1}{2}$

- $2 \text{ b-Jets} \qquad \text{Freie Modellparameter:} \\ m_A, m_{Z'}, m_{\chi}, \tan\beta, g_{Z'q\bar{q}} \\ \rightarrow m_{\chi} = 100 \text{ GeV}, \tan\beta = 1, \\ \sigma_{TL} = -0.8$
 - $g_{Z'q\bar{q}}=0.8$
 - $\begin{array}{rcl} & \to & m_A, \, m_{Z'} \, \, \text{werden variiert} \\ E_{\mathrm{T}}^{\mathrm{miss}} & & \left(m_A > 2 \cdot m_{\chi} \right) \end{array}$

Zerfallsprodukte des Higgs-Bosons und DM zeigen back-to-back Topologie

• Higgs-Boson geboostet ($p_T^{\text{Higgs}} \approx E_T^{\text{miss}}$)

leicht geboostete Topologie 150 GeV $< E_{\rm T}^{\rm miss} <$ 500 GeV h> 2 Jets (Radiusparameter R=0.4) \Rightarrow *b*-Jet Identifikation

Variable zur Identifizierung des Higgs-Bosons:

Invariante Di-Jet-Masse

Masse des Fat-Jets

Die größten Untergründe:

 $t\bar{t}, Z(\rightarrow \nu\nu)$ +Jets und $W(\rightarrow \ell\nu)$ +Jets

 $t\bar{t}$ -Produktion:

- ► E^{miss}_T aus leptonischem W-Bosonzerfall (ℓ nicht rekonstruiert)
- mind. 2 b-Jets

$Z(\rightarrow u u)$ +Jets:

- hohe E_{T}^{miss} durch Z-Bosonzerfall in 2 Neutrinos (oder $Z \rightarrow \tau \tau$)
- Jets aus leichten und schweren Quarks

▶ Weitere: SM Vh, Diboson-, Single-Top-Quark- und Multijet-Produktion

$W(\rightarrow \ell \nu)$ +Jets:

- E^{miss}_T aus leptonischem W-Bosonzerfall (ℓ nicht rekonstruiert)
- Jets aus leichten und schweren Quarks

Rainer Röhrig 4/11

Details zum Trigger: Stanislav Suchek, T 10.4

[2] Details zur Selektion: Daniel Isaac Narrias Villar, T 10.3

Rainer Röhrig 5/11

Ergebnisse der Signalregion - 2 b-Jets

- Gute Daten / MC Übereinstimmung (Pre-Fit)
- Signalregion dominiert durch Z+Jets, W+Jets und $t\bar{t}$ Ereignisse
- Für noch bessere Untergrundabschätzung:
- ⇒ Normierung der wichtigsten Untergründe aus dem simultanen Fit in allen Signal- und Kontrollregionen

Definition der Kontrollregionen

- 1 isoliertes Myon
- 2 b-Jet Region: hauptsächlich tt
- ▶ 1 *b*-Jet Region: $t\bar{t}$ und *W*+Jets
- Myonladung unterscheidet zwischen tt und W+Jets (zwei Bins)

- *ll* Paare aus Z-Zerfall
- Hauptsächlich Z+Jets
- \Rightarrow Nur ein Bin

Kombinierter Profile-Likelihood Fit der invarianten $m_{jj}(m_J)$ Masse in Signal- und Kontrollregionen

Frei Parameter:

- ► 3 Untergrundnormierungen:
 - W+Jets, Z+Jets und $t\overline{t}$
- und die Signalstärke μ
- Systematiken werden als nuisance Parameter berücksichtigt

Rainer Röhrig 8/11

Ergebnisse der Signalregion - 2 b-Jetregion

Signalmodell: Z'-2-Higgs-Dublett-Modell

- Erwartete Ausschlussgrenzen in der $m_A m_{Z'}$ -Ebene
- ▶ $m_{Z'} = 600 2500$ GeV ausgeschlossen für m_A von bis zu 600 GeV

- Die Suche nach Dunkler Materie ist ein wichtiger Teil des Physikprogramms des ATLAS-Experiments am LHC.
- ► Nach der Entdeckung des Higgs-Bosons (2012), kann nach Dunkler Materie in Assoziation mit h → bb̄-Zerfällen gesucht werden.
- Mit Hilfe des Mono-Higgs-Kanals lässt sich der DM-Produktionsmechanismus direkt untersuchen.
- Die ATLAS Mono-Higgs Resultate sind besonders f
 ür leichte DM-Teilchen interessant und wir erwarten Mediatormassen von bis zu 2.5 TeV auszuschliessen.

Vielen Dank für Ihre Aufmerksamkeit!

Backup

Rainer Röhrig 1/12

ATLAS Work in progress

Untergrund	Normierung		
W + HF	$1.0{\pm}0.2$		
Z + HF	$1.13{\pm}0.07$		
tŦ	$0.98{\pm}0.02$		

Fitmodel

- ► VI: 10%
- ▶ Vcl: 30%
- V + Heavy Flavour 0 vs. 2 Leptonkanal: 20%
- Wbc/Whf, Wbl/Whf und Wcc/Whf Verhältnis: 20% jeweils
- Zbc/Zhf, Zbl/Zhf und Zcc/Zhf Verhältnis: 20% jeweils, individuell für 0 and 2 Leptonkanal
- Single Top-Quark Produktion: t-Kanal 4.4%
- Single Top-Quark Produktion: s-Kanal 4.6%
- ▶ Single Top-Quark Produktion: Wt assoziierte Produktion 6.2%
- WW Diboson Produktion: 25%
- ▶ WZ Diboson Produktion: 26%
- ZZ Diboson Produktion: 20%
- VH Produktion: kombiniert WH und ZH Normierung 50%

ATLAS Work in progress

-

Unsicherheiten	σ _μ / μ̂ [%]		
	(a)	(b)	(c)
Total	11	53	71
Statistical error	5.5	46	61
Systematical error	9.8	25	36
MC statistic	4.6	14	22
Flavour tagging, track jets	1.3	13	17
SM VH norm.	2.0	8.6	6.9
Luminosity	3.2	4.8	5.4
Z+jets Modelling	4.1	4.9	6.5
Jets R=0.4	1.6	4.3	2.1
Flavour tagging, calo jets	4.8	3.9	4.6
tī Modelling	3.1	3.5	3.8
Signal theory uncertainties	3.8	3.1	2.1
W+jets Modelling	3.6	2.7	3.7
Leptons	0.58	1.9	3.7
Jets R=1.0	0.033	1.34	4.7
Diboson norm.	1.1	0.87	2.1
Single-top modelling	0.45	0.45	0.61

Tabelle: $(m_{Z'}, m_A) = (a)$ (600 GeV,300 GeV), (b) (1400 GeV,600 GeV) and (c) (2600 GeV,300 GeV).

- Analyse ist statistisch limitiert
- Grösste experimentelle Unsicherheiten:

b-Jet Identifizierung und Effizienz SM Vh (50% Unsicherheit im FIt) Fehler auf Luminosität

Signalmodell: Z'-Zwei-Higgs-Dublett-Modell

- Fit an Asimov Daten mit $\mu = 1$
- Signalwirkungsquerschnitt von 10 fb verwendet
- Erwartete Signifikanz in der $m_A m_{Z'}$ Ebene Weitere Modellparameter sind fixiert

Rainer Röhrig 5/12

Ergebnisse der 0 Leptonsignalregion - 1 b-Jetregion

Rainer Röhrig 6/12

Ergebnisse der 1 Leptonkontrollregion - 1 b-Jetregion

Rainer Röhrig 7/12

Ergebnisse der 1 Leptonkontrollregion - 2 b-Jetregion

Ergebnisse der 2 Leptonkontrollregion - 1 b-Jetregion

Ergebnisse der 2 Leptonkontrollregion - 2 b-Jetregion

Event Display

Rainer Röhrig 11/12

Wirkungsquerschnitte

Z' - 2 HDM

