

Suche nach Supersymmetrie in multileptonischen Endzuständen mit dem ATLAS Detektor bei $\sqrt{s} = 13$ TeV

Stefan Maschek, Hubert Kroha

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

DPG Frühjahrstagung 30. März 2017

Motivation: Das Bezugsmodel

Warum 4 Lepton Signatur?

- Sensitiv gegenüber einer Vielzahl an SUSY-Modellen
- Sehr geringer Standardmodell-Untergrund
- $\bullet~$ R-paritätsverletzendes (RPV) Modell \rightarrow leichtestes SUSY-Teilchen (LSP) kann in Standardmodell-Teilchen zerfallen

$$\begin{array}{c} W \\ \ell \\ \hline W \\ \ell \\ \hline W \\ \ell \\ \hline U \\ L_{j} \\ L_{j$$

 \longrightarrow Suche nach solchen Prozessen mit dem ATLAS-Detektor mit $\sqrt{s}=13~{\rm TeV}$

SUSY-Suche in Endzuständen mit mindestens 4 Leptonen mit ATLAS: Objekt Selektion

• Leichte geladene Leptonen (= Elektronen, Myonen)

$$p_{\mathrm{T}}^{\mathrm{Elektron}} > 5 \ \mathrm{GeV}$$

 $p_{\mathrm{T}}^{\mathrm{Myon}} > 7 \ \mathrm{GeV}$

Jets::

$$p_{\mathrm{T}}^{\mathrm{jet}} > 20 ~\mathrm{GeV}$$

SUSY-Suche in Endzuständen mit mindestens 4 Leptonen mit ATLAS: Objekt Selektion

• Leichte geladene Leptonen (= Elektronen, Myonen)

$$p_{\mathrm{T}}^{\mathrm{Elektron}} > 5 \ \mathrm{GeV}$$

 $p_{\mathrm{T}}^{\mathrm{Myon}} > 7 \ \mathrm{GeV}$

Signal-Leptonen

- Stoßparameter
- Identifikationsgüte
- Isolierung von hadronischen Aktivitäten

Jets::

$$p_{\rm T}^{\rm jet} > 20 ~{
m GeV}$$

SUSY-Suche in Endzuständen mit mindestens 4 Leptonen mit ATLAS: Objekt Selektion

• Leichte geladene Leptonen (= Elektronen, Myonen)

$$\begin{array}{ll} p_{\mathrm{T}}^{\mathsf{Elektron}} > 5 \ \, \mathrm{GeV} \\ p_{\mathrm{T}}^{\mathsf{Myon}} > 7 \ \, \mathrm{GeV} \end{array}$$

Signal-Leptonen

- Stoßparameter
- Identifikationsgüte
- Isolierung von hadronischen Aktivitäten

Jets::

$$p_{\rm T}^{\rm jet} > 20 ~{
m GeV}$$

• Fehlender Transversalengergie:

$$E_{T}^{\text{miss}} = \left| \sum_{\substack{\text{rekonstruierte} \\ \text{Objekte}}} \vec{E}_{T} + \sum_{\substack{\text{unzugeordnete} \\ \text{Calorimeterausschläge}}} \vec{E}_{T} \right|$$

SUSY-Suche in Endzuständen mit mindestens 4 Leptonen mit ATLAS: Ereignis Selektion

- Vier (leichte geladene) Leptonen
- Z-Veto: Verwerfe Ereignisse, wenn:

$$egin{aligned} & |m(\ell^+\ell^-) - m_Z| < 10 \,\, {
m GeV} \ & |m(\ell^+\ell^-\ell'^{\pm}) - m_Z| < 10 \,\, {
m GeV} \ & |m(\ell^+\ell^-\ell'^+\ell'^-) - m_Z| < 10 \,\, {
m GeV} \end{aligned}$$

• Effektive Masse:

$$m_{\mathrm{eff}} = \sum_{\mathrm{Leptonen}} p_{\mathrm{T}} + \sum_{\mathrm{Jets}} p_{\mathrm{T}} + E_T^{\mathrm{miss}}$$

- \rightarrow Zwei Signalregionen (SR):
 - $m_{\rm eff} > 600 \ {
 m GeV} \rightarrow {
 m Signalregion} \ {
 m A} \ ({
 m SRA})$
 - $m_{\rm eff} > 900 \ {
 m GeV} \rightarrow {
 m Signalregion } {
 m B} \ ({
 m SRB})$

Erwarteter Untergrund (MC)

Hauptuntergründe

- ZZ bei niedrigen $m_{\rm eff}$
- $t\bar{t}Z$ bei hohen $m_{\rm eff}$ (SR)
- Ebenfalls hoher Beitrag durch $t\bar{t}$

Erwarteter Untergrund (MC)

Hauptuntergründe

- ZZ bei niedrigen $m_{
 m eff}
 ightarrow$ irreduzierbarer
- $t\bar{t}Z$ bei hohen $m_{
 m eff}$ (SR) ightarrow irreduzierbarer
- Ebenfalls hoher Beitrag durch $t\bar{t}
 ightarrow {
 m reduzier barer}$

Erwarteter Untergrund (MC)

Hauptuntergründe

- ZZ bei niedrigen $m_{
 m eff}
 ightarrow$ irreduzierbarer ightarrow Monte Carlo
- $t \overline{t} Z$ bei hohen $m_{
 m eff}$ (SR) ightarrow irreduzierbarer ightarrow Monte Carlo
- Ebenfalls hoher Beitrag durch $t\bar{t}
 ightarrow reduzierbarer
 ightarrow$ schwer zu simulieren! ightarrow datenorientiert
- \longrightarrow Dieser Vortrag beschäftigt sich mit reduzierbaren Untergründen

Herkunft der Fake-Leptonen:

• **HF**: Zerfall schwerer Hadronen (heavy flavor hadrons) (> 90%)

Herkunft der Fake-Leptonen:

- **HF**: Zerfall schwerer Hadronen (heavy flavor hadrons) (> 90%)
- **CO**: Photon conversion, $\gamma \rightarrow e^+e^-$ ($\approx 20\%$ der Fake-Elektronen)

Herkunft der Fake-Leptonen:

- **HF**: Zerfall schwerer Hadronen (heavy flavor hadrons) (> 90%)
- **CO**: Photon conversion, $\gamma \rightarrow e^+e^-$ (\approx 20% der Fake-Elektronen)
- LF: Zerfallende oder missidentifizierte leichte Mesonen (≈ 5% der Fake-Myonen)

 Definiere Kontroll-Leptonen (*l*_C): Rekonstruierte Leptonen, die Signalkritierien nicht erfüllen

 ℓ_{C}

- Definiere Kontroll-Leptonen (*l*_C): Rekonstruierte Leptonen, die Signalkritierien nicht erfüllen
- Definiere Kontroll-Region (CR): Zwei Signal-Leptonen werden durch Kontroll-Leptonen ersetzt.

- Definiere Kontroll-Leptonen (*l*_C): Rekonstruierte Leptonen, die Signalkritierien nicht erfüllen
- Definiere Kontroll-Region (CR): Zwei Signal-Leptonen werden durch Kontroll-Leptonen ersetzt.

Bestimmung des reduzierbaren Untergrunds durch Extrapolation von CR nach SR in Daten, N_{SR} = N_{CR}F₁F₂.

- Definiere Kontroll-Leptonen (*l_C*): Rekonstruierte Leptonen, die Signalkritierien nicht erfüllen
- Definiere Kontroll-Region (CR): Zwei Signal-Leptonen werden durch Kontroll-Leptonen ersetzt.

Bestimmung des reduzierbaren Untergrunds durch Extrapolation von CR nach SR in Daten, N_{SR} = N_{CR}F₁F₂.

Lepton-Fake-Faktor

$$m{F}(p_{\mathrm{T}}^\ell) = rac{P(\mathsf{signal})}{P(\mathsf{control})} = rac{P(\mathsf{signal})}{1-P(\mathsf{signal})}$$

Bestimmung des Fake-Faktors: Standard Methode

Bestimmung durch ein gewichtetes Mittel

$$F = \sum_{i=\mathsf{HF},\mathsf{LF},\mathsf{CO}} R^i F^i C^i$$

- Rⁱ: Erwarteter Beitrag
- Fⁱ: Durch MC bestimmter Fake-Faktor
- Cⁱ: Korrekturfaktor, in Daten bestimmt
 - Bestimmt f
 ür HF
 - ▶ LF und CO: hohe Unsicherheiten angenommen.

Monte Carlo Fake-Faktor $F = \sum R^i F^i C^i$

- In $t\bar{t}$ MC sample bestimmt
- Fake-Herkunft in Simulation bekannt

Monte Carlo Fake-Faktor $F = \sum R^i F^i C^i$

- In tt MC sample bestimmt
- Fake-Herkunft in Simulation bekannt

Fake-Faktor hängt stark vom Transversalimpuls (p_T) ab $\rightarrow F = F(p_T)$

LF Fake-Faktor

Datenorientierte Bestimmung des Korrekturfaktors $F = \sum R^i F^i C^i$

Tag-and-Probe: $b\bar{b}$ ($c\bar{c}$) angereicherte Region

Datenorientierte Bestimmung des Korrekturfaktors $F = \sum R^i F^i C^i$

Resultierender Korrektur-Faktor, $F = \sum R^i F^i C^i$

→ Globales Mittel

Elektronen $C_{(e)}^{HF} = 1.011 \pm 0.079$

Myonen $C_{(\mu)}^{HF}=0.848\pm0.053$

Bestimmung des Fake-Faktors: Alternative Methode

Direkte Messung des Fake-Faktors in Daten

in der tīt Paarerzeugung.

Bestimmung des Fake-Faktors: Alternative Methode

Tag-and-Probe: $t\bar{t}$ angereicherte Region

- Ein hochenergetisches Signal-Myon ("Tag"),
- Mindestens ein b-Jet,

Bestimmung des Fake-Faktors: Alternative Methode

Tag-and-Probe: $t\bar{t}$ angereicherte Region

- Ein hochenergetisches Signal-Myon ("Tag"),
- Mindestens ein b-Jet,
- Ein weiteres Lepton ("Probe") mit gleicher Ladung wie das Tag-Myon
 - \longrightarrow Probe-Lepton ist Fake

In Daten bestimmter Fake-Faktor

In Daten bestimmter Fake-Faktor verglichen mit bisheriger Methode

Ergebnisse der Run-2 Analyse

- Integrierte Luminosität 13.3 fb⁻¹
- Data-MC Vergleich in niedrigen *m*_{eff}-Bereich Validierung der Untergrundabschätzung
- 2 Events aufgezeichnet in der Signalregion
- Sehr gute Übereinstimmung mit dem Standardmodell

Ergebnisse der Run-2 Analyse

- Integrierte Luminosität 13.3 fb⁻¹
- Data-MC Vergleich in niedrigen *m*_{eff}-Bereich Validierung der Untergrundabschätzung
- 2 Events aufgezeichnet in der Signalregion
- Sehr gute Übereinstimmung mit dem Standardmodell

- Interpretation: Ausschluss von Massenbereichen im Bezugsmodel
- Grenzen aus Run-1 wurden erweitert $0.75 \ {\rm TeV} \rightarrow 1.14 \ {\rm TeV}$

Zusammenfassung

- Suche nach R-paritätsverletzenden Zerfällen im Vier-Lepton-Kanal mit dem ATLAS-Detektor bei $\sqrt{s}=13~{\rm TeV}$
- Vorstellung einer datenorientierten Methode der Untergrundabschätzung des reduzierbarer Untergrunds
- Zwei unterschiedliche Methoden zur Bestimmung des Untergrunds zeigen konsistente Ergebnisse
- \bullet Ausschluss von Chargino Massen im RPV-Modell bis zu $1.14~{\rm TeV}$

Danke für die Aufmerksamkeit

Danke für die Aufmerksamkeit

Danke für die Aufmerksamkeit

Backup: Other variables

Backup: Other fake processes

Stefan Maschek

Backup: Reinhheit in der $b\bar{b}$ -Region

Untergrund ● tī

Backup: Reinhheit in der $b\bar{b}$ -Region

Backup: Reinhheit in der $t\overline{t}$ -Region

Untergrund

- W + jets
- "Charge-Flip" bei Elektronen

Backup: Reinhheit in der $t\bar{t}$ -Region

Untergrund

Lösung

- W + jets
- "Charge-Flip" bei Elektronen

- W + jets ~ Schnitt auf (b-)Jet Multiplizitäten
- Charge-Flip: Datenorientierte Bestimmung möglich

Scale Factor aus der $t\bar{t}$ Region Elektronen (Vorläufig)

Myonen

 $sf_{(\mu)}^{HF} = 0.909 \pm 0.103$

Stefan Maschek

DPG Frühjahrstagung 30. März 2017

Backup: Closure test Fake-Faktor Methode

Backup: Das Superpotential

MSSM

$$W_{\text{MSSM}} = y_u^{ij} \vec{\vec{U}}_i \vec{Q}_j H_u - y_d^{ij} \vec{\vec{D}}_i \vec{Q}_j H_d - y_e^{ij} \vec{\vec{E}}_i \vec{L}_j H_d + \mu H_u H_d,$$

RPV Terms

$$W_{\mathsf{RPV}} = \frac{1}{2} \lambda_{ijk} \vec{L}_i \vec{L}_j \vec{E}_k + \lambda'_{ijk} \vec{L}_i \vec{Q}_j \vec{D}_k + \kappa_i \vec{L}_i H_u + \frac{1}{2} \lambda''_{ijk} \vec{U}_i \vec{D}_j \vec{D}_k,$$

ATLAS

Electrons

- Track in the inner detector
- Energy deposit in the calorimeter

Muons

- Track in the Inner Detector
- Track in the Muon Spectrometer

Hadronen-Shower (jets, *b*-jets)

- Energy deposit in the calorimeter
- Charged Hadrons: Track in the Inner Detector

Missing transverse momentum, $\textit{E}_{\rm T}^{\rm miss}$

- Negative vector sum of all measured momenta
- For indirect detection of neutrinos

