

Suche nach \tilde{t} in hadronische Endzustände mithilfe von multivariaten Methoden mit dem ATLAS-Detektor

Jonas Graw, betreut von Nicolas Köhler

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

27. März 2017

iir Bilduna

undesministerium FSP 103 and Forschung

- Keine Leptonen
- min. 6 Jets
- min. 2 b-Jets

Variablendefinitionen:

--
$$H_T^{\text{Jets}} = \sum_{\text{Jets}} p_T$$

-- $H_{T,sig} = \frac{E_T^{\text{miss}}}{\sqrt{H_T^{\text{Jets}}}}$

Standard schnittbasierte Methoden

- Verwendung von diskriminierenden Variablen um möglichst viel Untergrund zu eliminieren
- Schnitt auf diskriminierende Variablen um möglichst große Parameterräume mit hoher Signifikanz zu erreichen

- Optimiert f
 ür m
 $\overline{t} = 1000 \text{ GeV}$ und m
 $\chi^0 = 1 \text{ GeV}$
- Wichtige Variablen: $m_{T2}, m_T^{b,min}, m_T^{b,max}, m_{jet,R=1.2}^{0}, m_{jet,R=1.2}^{1}, m_{jet,R=0.8}^{0}$
- Wie kann man Parameterräume mit hoher Signifikanz in Zukunft vergrößern?
- Wie kann man Variablen mittels multivariater Methoden besser verwenden?

- Boosted Decision Tree (BDT) verwendet um Benutzung der Diskriminanzvariablen zu optimieren
- BDT response ist Indikator, wie wahrscheinlich Ereignis Signal bzw. Untergrund ist

- Test- und Trainingsdaten stimmen sehr gut überein
- Kein Übertraining

Schnitt auf BDT-respones¹

- Wichtige Variablen: E_T^{miss} , m_{T2} , $p_T(top)$
- Schneiden bei BDT-response ≥ 0,34

¹Training für Modell mit $m_{\tilde{t}} \ge 1000 \text{ GeV}$

- Blinded f
 ür BDT response > 0
- Kleine Abweichung zwischen Daten und Vorhersagen sichtbar
- Gute Übereinstimmung der Daten mit der Untergrundvorhersage

Erwartete Signifikanzen im \tilde{t} - $\tilde{\chi}_1^0$ -Parameterraum

Schnittbasierte Methode

 \rightarrow Erwartete Signifikanz von 3σ bis $m_{\tilde{t}} = 1000 \text{ GeV}$

²Training für Modell mit $m_{\tilde{t}} > 1$ TeV

Signifikanzen bei unterschiedlichen BDT-Trainings

• Training für Modell mit $m_{ ilde{t}} \geq 1000 ~{
m GeV}$

Training mit allen $\tilde{t} \rightarrow t + \tilde{\chi}_1^0$ Modellen

- Deutliche Vergrößerung der signifikanten Fläche, v.a. Richtung Diagonale
- Bei $m_{\tilde{t}}$ =600 GeV und $m_{\tilde{\chi}^0}$ =300 GeV erreicht Training mit allen Modellen Signifikanz von $0, 8\sigma$
- Für große $m_{\tilde{t}}$ ist Training mit $m_{\tilde{t}} \ge 1000$ GeV vielversprechender

Jonas Graw - \tilde{t} in hadronische Endzustände mit BDT

- Multivariate Optimierung von Signalregion f
 ür
 $t \to 0\ell$ -Analyse
- BDT führt zu Erhöhung von Signifikanz
- Training mit Datensätzen mit $m_{\tilde{t}} \geq$ 1000 GeV \rightarrow 3 σ bis 1000 GeV
- Training mit allen Datensätzen $\rightarrow 3\sigma$ für $m_{\tilde{t}} =$ 600 GeV, $m_{\tilde{\chi}_1^0} =$ 250 GeV
- Wie kann man die Phasenräume vergrößern?
- Plan:
 - -- Optimierung entlang der Diagonalen
 - -- Optimierung für hohe *t*-Massen
 - -- Verwendung von anderen multivariaten Analysemethoden

ANHANG

27.03.2017

Jonas Graw - \tilde{t} in hadronische Endzustände mit BDT

Boosted Decision Tree (BDT)

- Aufteilung Prozesse: Signal und Untergrund
- Abzweigentscheidung wird durch genau eine Diskriminanzvariable getroffen (Schnitt)
- gewählte Diskriminanzvariable gibt bestmög Untergrund an
- Boosting: Training eines neuen Baumes, wobei falsch klassifizierte Ereignisse stärker gewichtet werden
- Verwendung eines Entscheidungswaldes anstatt eines Entscheidungsbaums
- BDT response $r(i) \in [-1, 1]$ eines Ereignisses i: Klassifizierungsmaß abhänging von den Bäumen, wobei Grenzfälle: $\begin{cases} r(i) = +1 \\ r(i) = -1 \end{cases}$: Alle Bäume klassifizieren *i* als $\begin{cases} Signal \\ Untergrund \end{cases}$

- Nach Training: Vergleiche wahren Wert der Testprobe y_i mit Vorhersage s_i . w_i : Wichtungen, wobei $\sum_i w_i = 1$
- Fehlerquotient: $e = \sum_{i} w_i 1_{s_i \neq y_i}$
- Boostfaktor $\alpha=\beta\cdot\ln\left(\frac{1-{\rm e}}{{\rm e}}\right)$ mit β konstant, meist $\beta\in[0,1]$
- Neue Gewichte: $w_i \rightarrow w_i \cdot exp(\alpha \cdot 1_{s_i \neq y_i})$
- BDT response des Ereignisses *i*: $r_i = \frac{\sum_m \alpha_m(s_i)_m}{\sum_m \alpha_m}$, wobei
 - $(\mathbf{s}_i)_m = \begin{cases} 1 & \text{falls Tree } m \text{ Signal vorhergesagt} \\ -1 & \text{falls Tree } m \text{ Untergrund vorhergesagt} \end{cases}$

- N(i): Anzahl Events mit $BDT response \le i$. Dann N(i) = B(i) + S(i)
- N_B : Die Anzahl der beobachteten Untergrund-Ereignisse. Dann: $p - value = p(N_B \ge N)$

Correlation Matrix (signal)

ATLAS Work in progress

