

Muon reconstruction performance in 2016 data-taking

Johannes Junggeburth

Max Planck Institute for Physics (Werner-Heisenberg-Institut)

Thursday 30th March, 2017

Bundesministerium für Bildung und Forschung

Muon reconstruction at the ATLAS detector

- Combined muons (combine Inner Detector (ID) and Muon Spectrometer (MS) measurements)
- ightarrow Standard method used in ATLAS
 - Standalone muons: MS only (at high η, near to the beam axis)
 - Calo-Tagged muons: ID tracks with additional small energy deposits in the calorimeter (at $\eta \approx 0$)
 - Segment-Tagged muons: ID tracks combined with single segments of the MS (at low energies)

- All precision measurements of processes with muons in the final state require the knowledge of the muon reconstruction efficiency
- Tune agreement between measured data and MC simulation by applying corrections to the MC
- → Muon efficiency ϵ especially important for multi-lepton final states (e.g. integrated *Z*-boson cross section measurement, where $N_{\rm events} \sim \epsilon^2$)

Example - Reconstruction efficiency for muons in the MS:

- Use dimuon resonances where one muon is called *Tag*, the other one *Probe*
- MS efficiency is the probability that a *Probe* track measured in the ID is also reconstructed as a muon by the MS
- ightarrow Count number of ID tracks as *Probes*
- ightarrow Try to match reconstructed MS muons to all the ID *Probes*

$$\rightarrow \quad \text{Efficiency } \epsilon = \frac{N_{\text{matched Probes}}}{N_{\text{Probes}}}$$

 $\mu\mu$ mass resonances are the standard candle for Tag&Probe measurements

PublicPlots [MUON-2015-001]

I.e. $Z \rightarrow \mu\mu$ and $J/\psi \rightarrow \mu\mu$ events profit from clear signature and good background suppression

This talk: Efficiency measurement in $Z \rightarrow \mu \mu$

 $J/\psi
ightarrow \mu\mu$ covered by Michael Holzbock [T63.4]

Tag&Probe pairs after $Z \rightarrow \mu\mu$ selection

Invariant mass

background ratio

Data-driven (DD) QCD background estimate with same-charge muon events, irreducible backgrounds ($t\bar{t}, Z \rightarrow \tau \tau$) are taken from MC simulation

Runs of data-taking in 2016

- Operation of the muon system with 95% efficiency during 2016 data taking
- Time-dependent inefficiencies modeled within $\sim 1\%$ uncertainty

- Systematics at 1% level for high and low p_T muons
- Good modeling of the muons within 2% uncertainty

- Goal: Examine if μ reconstruction is affected by close-by jet
 - \Rightarrow Select T&P pairs with $\Delta R(\text{probe}, \text{jet}) < 0.4$
- Much lower statistic with $\sim 160 k$ pairs
- Breakdown of the current QCD estimation method

- Trial to fit the $m_{\mu\mu}$ spectrum in each bin of p_T , η , etc.
- ightarrow Extract fractions of QCD, $Z
 ightarrow \mu\mu$ & irreducible
- First test in the $Z
 ightarrow \mu \mu$ analysis

Validation in the usual $Z\mu\mu$ Reco analysis

ABCD:

Smoother QCD shape through the fit in the probe distribution

03/30/2017

Johannes Junggeburth - Muon efficiencies

- Large QCD contribution for $\Delta {\it R}({\rm probe, jet}) < 0.1$ and low ${\it p}_{\rm T}$
- Systematics of the extracted efficiencies still in validation
- ightarrow Will be sown another time

Tag&Probe measurement of muon reconstruction efficiencies in ATLAS

- Muon reconstruction efficiencies around 98% in 2016
- Tiny systematic uncertainties (~ 1 %)
- Very good agreement of Z $ightarrow \mu \mu$ results
- Change of QCD estimation method started
- ightarrow Allows to cover efficiency measurement of μ in jets
 - Final results under validation

Tag&Probe measurement of muon reconstruction efficiencies in ATLAS

- Muon reconstruction efficiencies around 98% in 2016
- Tiny systematic uncertainties (~ 1 %)
- Very good agreement of Z $ightarrow \mu\mu$ results
- Change of QCD estimation method started
- ightarrow Allows to cover efficiency measurement of μ in jets
 - Final results under validation

Greetings from the uni cave

BACKUP

03/30/2017

Johannes Junggeburth - Muon efficiencies