

Search for R-Parity violating Supersymmetry in multileptonic final states at $\sqrt{s} = 13$ TeV with ATLAS

Johannes Junggeburth

Max Planck Institute for Physics (Werner-Heisenberg-Institut)

Wednesday 29th March, 2017

$$P_{R} = (-1)^{3(B-L)+2S} = \begin{cases} 1 & \text{for SM particles} \\ -1 & \text{for SUSY particles} \end{cases}$$

- Supersymmetry belongs amongst the favoured BSM theories
- In a general SUSY theory interactions allowed violating R-parity

$$W \subset \lambda_{ijk} L_i L_j \overline{E}_k$$

 \Rightarrow Lightest SUSY particle $ilde{\chi}_1^0$ is allowed to decay

- Consideration of electroweak production modes with $\tilde{\mathbf{Y}} \rightarrow \tilde{\chi}_1^0 + \mathbf{Y}$:
 - 1. *W*-production:

$$\tilde{\chi}_1^+ \tilde{\chi}_1^- / \tilde{\chi}_1^- \tilde{\chi}_2^0 / \tilde{\chi}_1^+ \tilde{\chi}_2^0$$

2. $\tilde{\ell}$ -production:

$$\tilde{\ell}_i^+ \tilde{\ell}_i^- / \tilde{\ell}_i^+ \tilde{\nu}_i / \tilde{\ell}_i^- \tilde{\nu}_i / \tilde{\nu}_i \tilde{\nu}_i$$

- Additional case: $\tilde{\nu}\tilde{\nu}$ with direct $\tilde{\nu}\to\ell\ell$ decays
- ⇒ Subsequent $\tilde{\chi}_1^0$ decay leads to final state with $N \ge 4$ leptons

Background sources

- Irreducible background processes: $ZZ, t\bar{t} + X (X = Z, VV, t\bar{t}), VVV,$ Higgs
- Estimation based on Monte-Carlo
- Strong rejection via Z-veto:

$$|m_{\rm SFOS}-m_Z|>10~{\rm GeV}$$

 $\bar{\nu}_{\ell}$

- Reducible backgrounds:
 - tt, Z+jets, WZ
- Estimated in control data using the fake-factor method
 - c.f. Stefan Maschek

Object & event selection

- Selection of events with $N_l \ge 4$, $(l = e/\mu/\tau)$
- Signal e/μ required to be isolated and originate from primary vertex
- Improved e/μ -isolation criteria to enhance sensitivity to models with low $m_{\tilde{\chi}_1^0}$

	p_{T} [GeV]	$ \eta $
е	≥ 7	≤ 2.47
μ	≥ 5	≤ 2.70
au	≥ 20	≤ 2.50
j	≥ 20	≤ 2.80

Region	$m_{\rm eff}[{ m GeV}]$	
VR0	< 600	
SR0A	> 600	
SR0B	> 1100	

- Event classification based on τ -multiplicity
- This talk: τ not considered (τ covered by Andrea Matic)
- Only events passing the Z-veto are considered
- Main discriminating variable effective mass:

$$m_{\text{eff}} = E_{\text{T}}^{\text{miss}} + \sum_{\substack{\ell,j \\ p_{\text{T}}(i) > 40 \text{ GeV}}} p_{\text{T}}$$

Johannes Junggeburth - Multilepton SUSY

- Signal located at high m_{eff}
- Good modelling observed of data within statistics
- In total 11 (1.5) background events expected in SR0A (SR0B)
 - Background in SR dominated by ttZ & ZZ production

Johannes Junggeburth - Multilepton SUSY

- Signal located at high m_{eff}
- Good modelling observed of data within statistics
- In total 11 (1.5) background events expected in SR0A (SR0B)
 - Background in SR dominated by ttZ & ZZ production

Sensitivity of the \tilde{W} - model

• Only $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ production considered for ICHEP-2016 (13.8 fb⁻¹) $\Rightarrow \tilde{\chi}_1^\pm$ excluded at 95% C.L for masses with $m \sim 1.14$ TeV

Include $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ - production

 $\Rightarrow~$ Exclusion sensitivity goes beyond $m_{ ilde{\chi}_1^\pm}/m_{ ilde{\chi}_2^0}\sim 1.4$ TeV

Sensitivity of the \tilde{W} - model

• Only $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ production considered for ICHEP-2016 (13.8 fb⁻¹) $\Rightarrow \tilde{\chi}_1^\pm$ excluded at 95% C.L for masses with $m \sim 1.14$ TeV

- Include $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0$ production
- $\Rightarrow~$ Exclusion sensitivity goes beyond $m_{ ilde{\chi}_1^\pm}/m_{ ilde{\chi}_2^0}\sim 1.4$ TeV

Sensitivity of the $\tilde{\ell}\tilde{\nu}$ -model

- 3σ sensitivity to $\tilde{\ell}\tilde{\nu}$ production for $m_{\tilde{\ell}/\tilde{\nu}}\sim 600~{\rm GeV}$
- Model with $\tilde{\nu} \rightarrow \ell \ell$ is less sensitive due to lower expected m_{eff} and $\sigma_{\tilde{\nu}\tilde{\nu}}$

- Events with high lepton multiplicity are attractive for SUSY searches with R-parity violation (RPV)
- Low backgrounds
- ightarrow High sensitivity to different production modes simultaenously
- Development of new models
 - Full $\tilde{W}\text{-}$ model including $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0\text{-}\text{production}$
 - $\tilde{\ell}\tilde{\nu}$ -model with all production modes
 - Direct RPV-decays of the produced particles studied for the first time
- Publication planned soon

BACKUP

03/29/2017

Johannes Junggeburth - Multilepton SUSY