Backu

Measurement of the top-quark mass in the $t\bar{t} \rightarrow$ lepton+jets channel at $\sqrt{s} = 13$ TeV with ATLAS

Sebastian Schulte

GEFÖRDERT VOM

supervised by: Andrea Knue, Stefan Kluth, Richard Nisius

Bundesministerium für Bildung und Forschung

DPG annual meeting 2017 - Münster, 29th March 2017 -

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

– Top quark mass @ 13TeV –

Why is the top-quark mass interesting?

- heaviest particle of the Standard Model (SM)

 → decays before forming bound states
- plays an important role in electroweak symmetry breaking
- deviations between measured properties and SM predictions offer tests for new physics
- important for the vacuum stability of the SM

Introduction

How well do we know the mass?

Paper@ 7 TeV: Eur. Phys. J. C (2015) 75:330 •

The ATLAS experiment at the LHC

- multi- purpose detector
- almost full solid angle
- onion-shell structure

- ID: track, charge, momentum
- ECal: energy of e and γ
- HCal: energy of hadrons
- Muon system: tracks of muons

Top-quark pair production & top-quark decay

top-quark production at LHC

- *tt*-production via strong interaction
 - $\hookrightarrow \mathsf{gluon}\text{-}\mathsf{gluon}\ \mathsf{fusion}$
 - $\hookrightarrow \mathsf{quark}\text{-}\mathsf{antiquark} \ \mathsf{annihilation}$

top-quark decay

- top quark decays almost exclusively into a b-quark and a W-boson
- characterised by the W-boson decay
 - → allhadronic: $t\bar{t} \longrightarrow bW(\rightarrow q\bar{q}) + \bar{b}W(\rightarrow q\bar{q})$
 - → dilepton: $t\bar{t} \longrightarrow bW(\rightarrow l_1\nu_{l_1}) + \bar{b}W(\rightarrow l_2\nu_{l_2})$
 - → lepton + jets: $t\bar{t} \rightarrow bW(\rightarrow q\bar{q}) + \bar{b}W(\rightarrow l\nu_l)$

Event selection		

Data 2016, $\mathcal{L} = 33 \text{ fb}^{-1}$

MC predicted process	Events	Statistical uncertainty
<i>tī</i> (signal)	906500	630
Single top (signal)	46900	130
W+jets	43590	980
Z+jets	9220	270
Diboson	1678	24
Multijets	20324	1600
$t\overline{t} + V$	3438	9
Total signal+background	1031640	2000
Data	1104481	
Data/Prediction	1.071	0.002

- ${\, \bullet \,}$ mass dependence of single-top \Rightarrow include in signal
- ${\scriptstyle \bullet} \,$ background dominated by ${\it W}+{\rm jets}$ production

Introduction Event selection Event reconstruction Template parametrization Summary Backt

Global quantities: 13 TeV, e/μ + \geq 4 jets, \geq 2 b-tags

 \rightarrow disagreement in number of tagged jets, for 3 b-tag bin

– Top quark mass @ 13TeV –

Introduction	Event selection	Event reconstruction	Template parametrization	Summary	Backup
Event re	constructio	on			
4 jet	event \Rightarrow 24 pc	ossible jet-parton a	assignments		

- 12 permutations left since light jets from W-boson are indistinguishable
- Kinematic Likelihood fit with KLFitter → NIM A 748 (2014) 18-25
- KLFitter input: charged lepton, missing E_T and up to six jets
 - \Rightarrow choose best permutation for calculation

		Event reconstruction			
KLFitter	quantities	13 TeV. e/u	+ > 4 iets. > 2	b-tags	

 \rightarrow slope in hadronic top p_T is well known with NLO+PS generators

Introduction	Event selection	Event reconstruction	Template parametrization	Summary	Backup
Measuren	nent is bas	sed on a 3D-1	Femplate metho	d	

*m*_{top} has large uncertainties from JES and bJES

 \hookrightarrow idea: reduce by simultaneous measurement of m_{top} , jet energy scale factor (JSF) and relative b-to-light-jet energy scale factor (bJSF)

 \hookrightarrow need full reconstruction of $t\bar{t}$ -final state

- *m*^{reco}_{top} from KLFitter reconstructed events
- *m^{reco}*_W from chosen jet permutation, sensitive to JSF
- R^{reco}_{bq} from chosen jet permutation, sensitive to bJSF

Determination of m_{top} :

- template parametrization of m_{top}^{reco} , m_{W}^{reco} and R_{bq}^{reco}
- unbinned likelihood fit is performed to data \Rightarrow obtain m_{top} , JSF and bJSF

Fit functions for signal

- m_{top}^{reco} : gauss+ landau + landau_{mirror}
- m_W^{reco} : gauss + gauss
- R_{bq}^{reco} : gauss + gauss + landau

Introduction	Event selection	Event reconstruction	Template parametrization	Summary	Backup
Summary	/ & Outlook				

Current status

 \rightarrow established event selection and reconstruction with 13 TeV samples

- number of b-tagged jets not well described
- observed disagreement in reconstructed top p_T
- \rightarrow implemented first signal template parametrization
 - chosen fit converge
 - good description of simulated distributions

Next steps

- include single top production into the signal parametrization
- full 3D parametrisation with unbinned Likelihood fit, closure tests

			Backup
Backup			

Backup

Event display, $tt \longrightarrow l + jets$

Introduction	Event selection	Event reconstruction	Template parametrization	Summary	Backup
Reconstru	uction with	KLFitter			

- → Definition of kinematic Likelihood:
 - BW:Breit-Wigner distributions
 - W: transver function discribe detector resolution
 - different options to use b-tagging information

$$\begin{split} & L = BW(m_{q_1q_2}|m_W, \Gamma_W) \cdot BW(m_{l\nu}|m_W, \Gamma_W) \\ & BW(m_{q_1q_2b_{had}}|m_{top}, \Gamma_{top}) \cdot BW(m_{l\nu b_{lep}}|m_{top}, \Gamma_{top}) \\ & W(\tilde{E}_{jet_1}|E_{b_{had}})W(\tilde{E}_{jet_2}|E_{b_{lep}})W(\tilde{E}_{jet_3}|q_1)W(\tilde{E}_{jet_4}|q_2) \\ & W(\tilde{E}_x^{miss}|p_{x,\nu})W(\tilde{E}_y^{miss}|p_{y,\nu}) \left\{ \begin{array}{c} W(\tilde{E}_{l}|E_{l}) \\ W(\tilde{p}_{T,l}|P_{T,l}) \end{array} \right\} \end{split}$$

Settings:

- increased reconstruction efficiency, while using up to 6 jets
- veto: b-tagged jet in position of a light jet and vice-versa