Development and Test of a Demonstrator for a First-Level Muon Trigger based on the Precision Drift Tube Chambers for ATLAS at HL-LHC

K. Schmidt-Sommerfeld

Max-Planck-Institut für Physik, München

The ATLAS 1st Level Muon Trigger in LHC Run 1

- ATLAS presently uses a 3-level trigger system.
- The Level-1 high-p_T muon trigger is based on the coincindence of hits in three RPC layers in the barrel and three TGC layers in the middle endcap wheels.
- Muon momentum determination from the deviation of the hits from a straight line through the interaction point.
- High γ and neutron background rates in the ATLAS muon spectrometer.
 → ~7 x higher at HL-LHC: up to ~300 kHz/drift tube in the middle endcap layer corresponding to ~10% occupancy.

Sources of Level-1 Muon Triggers Run 1

- The muon trigger rate is dominated by fake triggers in the end-caps caused by charged particles not emerging from the interaction point.
- Real muon triggers contaminated with below-threshold muons due to the limited spatial and momentum resolution of the trigger chambers.

MDT-Based 1st Level Trigger at HL-LHC

Inclusive muon cross section

Muon 1st level trigger effciency

• The interesting physics is at $p_T > 20$ GeV.

- The inclusive muon cross section rises very steeply at low p_T.
- The present 1st level muon trigger with 20 GeV nominal threshold accepts high rate of muons with 10 GeV <p_T<20 GeV due to the limited spatial resolution of the trigger chambers.
- Sharpening of the trigger threshold by using the precision muon drift-tube (MDT) chambers is the solution to limit the muon trigger rate
- $\bullet \Rightarrow$ New MDT on- and off-chamber electronics for new read-out and trigger architecture.

K. Schmidt-Sommerfeld, MPI Munich

New MDT Readout Architecture

• 1 MHz 1st level trigger rate with 6 µs latency for ATLAS operation at HL-LHC.

(Present Level-1 trigger: 100 kHz rate, 2.5 µs latency).

For fast hardware-based muon track trigger algorithms with < 3 µs latency see talk by Ph. Gadow.

• For MDT-based 1st level trigger:

MDT chambers send their data continuously to the trigger and DAQ system. . All further processing and muon track and momentum reconstruction with full resolution performed in trigger processor off the detector.

Rols of the RPC/TGC muon trigger chambers are used as seeds for MDT track segment finding

New MDT on-chamber electronics is required, front-end boards with amplifier-shaper-discriminator (ASD) and TDC chips, As well as new off-chamber electronics, MDT trigger logic, Readout Driver ("Felix"):

MDT Trigger Demonstrator Test

Setup in a muon beam at the γ irradiation facility (GIF++) at CERN:

MDT Trigger Demonstrator Schematics

K. Schmidt-Sommerfeld, MPI Munich

MDT Trigger Demonstrator Electronics

K. Schmidt-Sommerfeld, MPI Munich

MDT Trigger Demonstrator Test

- Drift tube spatial resolution as a function of drift radius
- Expected dependence on the radius
- Difference between triggerless TDC and HPTDC due to digitization resolution
- Measured in a muon beam at the γ irradiation facility (GIF++) at CERN in 2016

- Efficiency := fraction of HPTDC hits found in triggerless TDC read-out chain
- 100% eff. up to 80 kHz counting rate
- Eff. loss at high rates due to bandwidth limitations

First MDT Track Trigger Processor Performance Test

- Data recorded with a MDT chamber at the Gamma Irradiation Facility at CERN used to simulate realistic operating conditions.
- Track segment reconstruction algorithm in C and ARM assembler code (simplified, 1D Hough transform-based algorithm for first test).

Run on the Cortex A9 ARM processor at 1 GHz (FPGA used for I/O and data mangement).

Processing time on a single ARM core:

Processing time already <3.5 µs

even at 20% occupancy which is twice the maximum occupancy in ATLAS at the HL-LHC!

Still many possibilities for optimisation.

Conclusions

- A highly selective 1st level muon trigger is required for the operation of the ATLAS muon spectrometer at HL-LHC.
- This is achieved by incorporating the data of the precision muon drift-tube (MDT) chambers in the 1st level muon trigger.
- The selectivity of an MDT-based trigger was studied with LHC run-I data and shown to give a low 20 GeV single-muon trigger rate of ≤ 20 kHz.
- The MDT-based trigger requires fast, triggerless (streamed) MDT read-out and new readout electronics.
 TDC chip with fast streamed readout and increased bandwidth under development, replacing FPGA-based demonstrator.
- Demonstrators of all components of this fast readout have been designed and successfully tested in muon beams under realistic γ background radiation rates.