

Suche nach Dunkler Materie in Assoziation mit einem hadronisch zerfallenden W/Z-Boson mit den Run-2-Daten des ATLAS-Detektors

27. März 2017 - DPG-Tagung Münster Philipp Gadow, Betreuer: Patrick Rieck | Max-Planck-Institut für Physik, München

Einleitung

WIMP: Weakly Interacting Massive Particle

Suche nach im LHC erzeugter Dunkler Materie (DM)

 $q q' \rightarrow \chi \, \overline{\chi} + W/Z(\text{hadr.})$

1 / 11

Mono-W/Z (hadronisch)

Signatur: Fehlender Transversalimpuls E_{τ}^{miss} mit W/Z-Boson rekonstruiert als

- (merged) Jet mit großem Radiusparameter (R = 1.0)
- (resolved) zwei Jets mit kleinem Radiusparameter (R = 0.4)

Dominante Untergrundprozesse

Weitere Untergrundprozesse: Diboson, Einzel-Top-Quark, QCD

B = 1.0

Mono-W/Z

Ereigniskategorien und Statistische Auswertung

Profile-Likelihood-Fit in E^{miss}_T

Mono-W/Z

Philipp Gadow (MPP)

- 0 Lepton Signalregion, 1 Lepton- und 2 Lepton Kontrollregion f
 ür dominante Untergr
 ünde mit 0, 1, and 2 b-tag Kategorien
- QCD-Abschätzung aus Daten notwendig, insbesondere für kleinere *E*^{miss}_T-Beiträge (Resolved-Analyse)

🖸 Phys. Lett. B 763 (2016) 251

QCD-Untergrund-Abschätzung

- Quelle für E_T^{miss} in QCD: Fehlerhafte Messung der Jet-Energie
- E^{miss} ist für QCD-Multijet-Prozess meist kolinear zu einem der Jets

Philipp Gadow (MPP)

Diskriminierende Variable

$$\Delta\phi:=\min_{i=1,2,3}\Delta\phi(\vec{E}_{\mathrm{T}}^{\mathrm{miss}},\vec{p}_{\mathrm{jet},i})$$

Datenbasierte Template-Methode

- 1. E_{T}^{miss} -Template aus QCD-Region mit $\Delta \phi < 0.4$ als Daten - MC
- 2. Bestimme Normierung der Template aus Maximum-Likelihood-Fit in Seitenbändern der W/Z-Masse

Methode wird separat angewendet für alle 6 Signalregionen (merged 0,1,2 *b*-tag, resolved, 0,1,2 *b*-tag)

Datenbasierte Template-Methode

▶ Normierung des $E_{\rm T}^{\rm miss}$ -Templates durch Effizienz des $\Delta\phi$ -Schnitts

 $\varepsilon = \frac{n_{\rm Signal}}{n_{\rm QCD}}$

 Bestimme Normierung durch Maximum-Likelihood-Fit der *E*^{miss}_T-Verteilung in Seitenbändern der *W*/*Z*-Masse

Vor Fit in Seitenband-Region

Seitenband-Region, post-fit

Mono-W/Z

Datenbasierte Template-Methode

▶ Normierung des $E_{\rm T}^{\rm miss}$ -Templates durch Effizienz des $\Delta\phi$ -Schnitts

 $\varepsilon = \frac{n_{\rm Signal}}{n_{\rm QCD}}$

 Bestimme Normierung durch Maximum-Likelihood-Fit der *E*^{miss}_T-Verteilung in Seitenbändern der *W*/*Z*-Masse

Fit in Seitenband-Region

Seitenband-Region, post-fit

Ergebnis der QCD-Abschätzung

Verteilungen mit QCD-Templates als Input für statistische Analyse (Seitenbänder)

Anteil von QCD-Ereignissen am Untergrund in Signalregion

	0 b-tag	1 b-tag	2 b-tag
merged	1.1 %	1.2%	2.1 %
resolved	2.0%	1.1%	1.4%

Mono-W/Z

Systematische Unsicherheiten der QCD-Abschätzung

- Normierungs-Unsicherheit: Unsicherheit aus Maximum-Likelihood-Fit
- Modellierungs-Unsicherheit:

Template = **Daten** - **MC**, somit abhängig von Modellierung anderer Untergründe. Fehlerabschätzung durch Fits mit Variation der Untergrund-Normierungen

 Extrapolations-Unsicherheit: Normierung des Template wird mit gelockerten Anti-QCD-Schnitten bestimmt.
 Fehlerabschätzung mittels Differenz zur Template-Bestimmung mit Anwendung der vollen Anti-QCD-Schnitte

Unsicherheiten werden quadratisch addiert: Pro Region ein Nuisance Parameter im statistischen Modell

Maß für Sensitivität der Analyse:

• erwartete Signifikanz ($\approx s/\sqrt{b}$)

- Hinzufügen der Resolved-Region
- Hinzufügen der B-Tagging Kategorien
- Datenbasierte
 Multijet Abschätzung

Maß für Sensitivität der Analyse:

• erwartete Signifikanz ($\approx s/\sqrt{b}$)

- Hinzufügen der Resolved-Region
- Hinzufügen der B-Tagging Kategorien
- Datenbasierte Multijet-Abschätzung

Maß für Sensitivität der Analyse:

• erwartete Signifikanz ($\approx s/\sqrt{b}$)

- Hinzufügen der Resolved-Region
- Hinzufügen der B-Tagging Kategorien
- Datenbasierte Multijet-Abschätzung

Maß für Sensitivität der Analyse:

• erwartete Signifikanz ($\approx s/\sqrt{b}$)

- Hinzufügen der Resolved-Region
- Hinzufügen der B-Tagging Kategorien
- Datenbasierte Multijet-Abschätzung

Zusammenfassung

- Suche nach Dunkler Materie in Assoziation mit hadronisch zerfallendem W/Z-Boson am ATLAS-Experiment
- QCD-Untergrund wurde abgeschätzt mit datenbasierter Template-Methode
- ► ATLAS Mono-W/Z-Suche ist vor allem f
 ür DM-Teilchen bis 150 GeV und leichte Mediatoren sensitiv
- Ausblick: Mono-W/Z besonders relevant für neue, konsistente Modelle Dunkler Materie (Zwei-Higgs-Dublett mit pseudoskalarem Mediator, Carxiv:1701.07427)