

PXD Grounding & Shielding

Fernando Arteche

MPI - February 2017

- PXD ground have been defined in several documents that have been prepared during the project.
 - Safety and equipment protection ground
 - Detector Performance ground (Noise ground)
- Safety & Equipment protection ground (Installation)
 - Metal parts that can be energized should be grounded
 - Ground connections Bonding and straps (size, etc)
 - Electrical Laboratory codes and Low Voltage directive
 - IEC 61000-5-2 Ed 1.0 (1997): EMC-Installation and mitigation guidelines: Earthing and cabling
 - IEC 62305-1 to 4 Ed 1.0 (2006): Protection against lightning
 - IEC 60364-5-54 Ed 3.0 (2011): Electrical installations of buildings. Selection and erection of electrical equipment- Earthing arrangements, protective conductors and protective bonding conductors.
- Detector performance ground

- Cooling blocks is defined as PXD local ground
 - Cooling blocks (both sides) connected via low impedance
 - PXD local ground connected to experiment ground
- PXD electronics ground (each leader) is connected to the cooling blocks (Multipoint ground topology)
- Cooling pipes isolated & grounded

- Local ground implementation : Cooling blocks
 - A unique ground structure for all PXD (Stainless steel)
 - It should guarantee the same potential from DC to hundreds of MHz of all PXD electronics

- Both sides connected together via CF tubes
 - Beam pipe connection is not allowed
 - Special coating needed to guarantee DC connection
 - R < ????? mohm</p>

Grounding Meeting February, 2017, MPI, Germany

- Local & detector gorund implementation : electronics gnd connection
 - AGND-DGND: Already have a common point at module level
 - A connection to local ground and detector ground are needed <u>????</u>

Local ground implementation : Cooling pipes

- CO2 and airflow pipes are electrically isolated towards the outside via ceramic joint
 - Inner part is grounded to cooling blocks
 - It avoids any noise penetrated to detector electronics
 - External part should be grounded to detector
 - Safety requirement (Belle II requirements) No floating metallic pieces

Grounding Meeting February, 2017, MPI, Germany

6 de 11

- PXD have a complex topology for cabling the sub-detector.
 - Voltages & Currents: Signal, Power & slow control cables
- Cables has been changed since last grounding discussion (2014)
- Attention has been paid to the cabling shielding because it may lead to some integration problems.
- Cable shield connection mainly defined by <u>Belle II</u> <u>rules</u>
 - Both sides connection will be the preferred option
 - Floating shields has to be minimized
 - Other options need to be justified

Kapton: Power, control & Data Power (up to 30V, 2A) Sensing (LV, mA) ?? Data, Ctrl, JTAG

Infiniband: Data Transmission Shielded & TSP Data, Ctrl, sense

•<u>CAT6</u>: →JTAG →Shielded ??

•Service cable 1 (x2): Power

Power
Inner Shields
External Shields

•Service cable 2: Power & control → Power (up to 30V , 2A) → No inner shields

•LVDS cable (20pin): Power & control

Ctrl
Power ??
Sensing (LV , mA)
JTAG
Shielded ??

- JBX is considered the entrance to Vertex volume
 - It is the last good ground
- Shields connections:
 - <u>External shields</u>
 - <u>15m long cables</u> Shield connected to <u>both sides</u>
 - It protects against electric and magnetic fields
 - It decreases the ability of the cable to radiate
 - <u>2m long cable</u> Shield connected <u>1 side</u> (JBX side)
 - Electrostatic protection
 - External and inner shields are independent
 - Inner Shields
 - Floating or connected 1 side (JBX side)
 - Drain wires not connected

3. SUMMARY

PXD grounding/shielding scheme@2016

Grounding Meeting February, 2017, MPI, Germany

11 de 11

BACKUP SLIDES

Several issues have been considered in the grounding

definition of PXD systems.

Multipoint grounding topology.

Short ground connections

Figure 6.7 The impedance of long ground wires

 Multiple equipment or units must be connected to a signal reference system (SRS) → for direct connection **bonding straps** are required

• Standards

Secciones de los conductores de fase o polares de la instalación (mm²)	Secciones mínimas de los conductores de protección (mm²)
S ≤ 16	S(*)
16 < S ≤ 35	16
S > 35	S/2

(*) Con un mínimo de:

 - 2,5 mm² si los conductores de protección no forman parte de la canalización de alimentación y tienen una protección mecánica.

 4 mm² si los conductores de protección no forman parte de la canalización de alimentación y no tienen una protección mecánica.

Belle II General Meeting June 18-21, 2014, KEK, Japan

Tabla 2

1.1 PXD GROUNDING: Topology

2.1 PXD GROUNDING: Topology

Basic Concept for Differential Transfer

