Physics at LHC Seminar

<u>Higgs boson search in decays H->VV</u> (V=W,Z) with early LHC data

09.06.2009

Christian Siebenwirth

Overview

- 1. LHC & Detectors (ATLAS & CMS)
- 2. SM Higgs
 - 2.1. Mass Limits
 - 2.2. Production
- 3. Decay channels
 - 3.1. H->ZZ^(*) decay
 - 3.2. H->WW^(*) decay
- 4. Conclusion

Overview

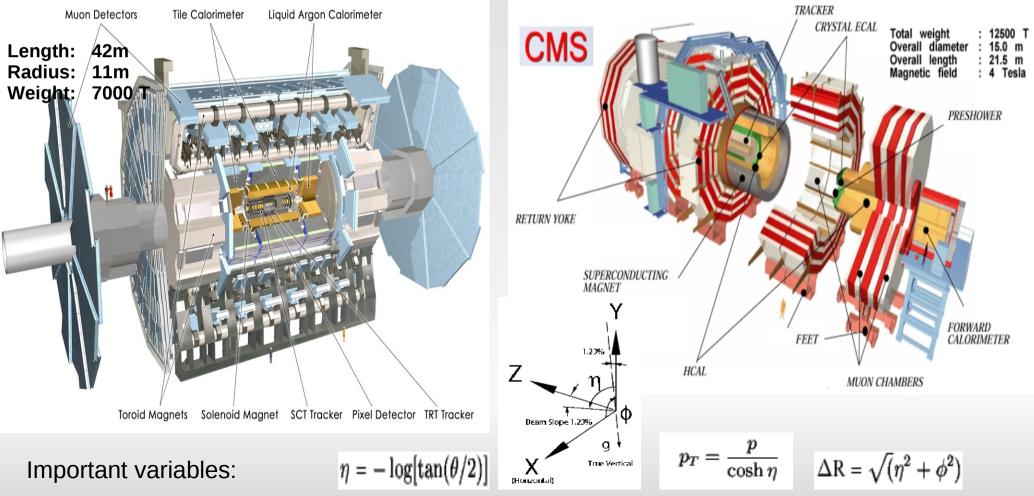
- 1. LHC & Detectors (ATLAS & CMS) ←
- 2. SM Higgs
 - 2.1. Mass Limits
 - 2.2. Production
- 3. Decay channels
 - 3.1. H->ZZ^(*) decay
 - 3.2. H->WW^(*) decay
- 4. Conclusion

1. The Large Hadron Collider (LHC)

Parameters	Value
Operating beam energy	$7{ m TeV}$
Relativistic γ	7461
Bunch spacing	$24.95{\rm ns}$ / $7.48{\rm m}$
Stored energy per beam	$334\mathrm{MJ}$
Number of all/full bunches	3564/2835
Protons per bunch	1.05×10^{11}
Average beam current	$536\mathrm{mA}$
Luminosity	2×10^{33} to $1\times10^{34}\mathrm{cm}^{-2}\mathrm{s}^{-1}$
Dipole magnetic field	$8.4\mathrm{T}$
Cryostat temperature	$1.9\mathrm{K}$
Beam lifetime	22 h
Luminosity lifetime	10 h
Number of interactions per beam crossing	23^{a}
RMS bunch length σ_z	$7.5 \mathrm{~cm}$
RMS bunch radius $\sigma_x=\sigma_y$	$16\mu\mathrm{m}$
RMS length of luminous region	$56 \mathrm{mm}$
Total crossing angle	$300\mu rad$
Power consumption	$125.75\mathrm{MW}$
Cost	${\sim}3$ billion CHF

Assuming 70 mb for the inelastic proton-proton cross-section and $\mathcal{L} = 1 \times 10^{34} \,\mathrm{cm}^{-2} \,\mathrm{s}^{-1}$.

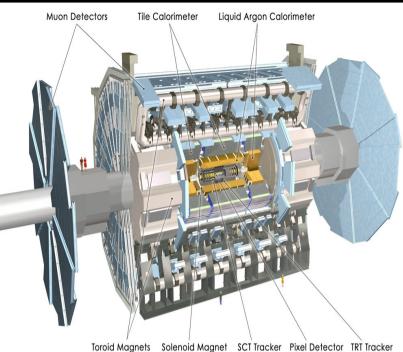
- pp collider at CERN, √s=14 TeV
- Start operation in autumn 2009
 - \rightarrow 10 TeV for this run
 - \rightarrow ~200pb⁻¹ expected by autumn 2010

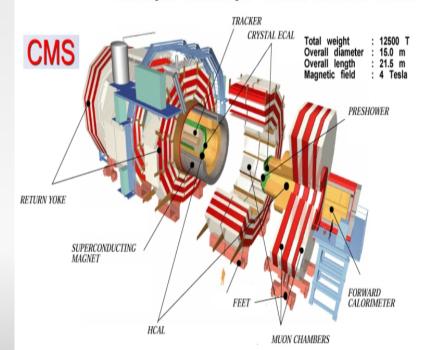


http://www.uslhc.us/Images

1. ATLAS & CMS

• Two general multi-purpose experiments with main goals:


- search for supersymmetry particles
- · look for clues to the nature of dark matter
- hunt for the Higgs boson



1.ATLAS & CMS: Differences

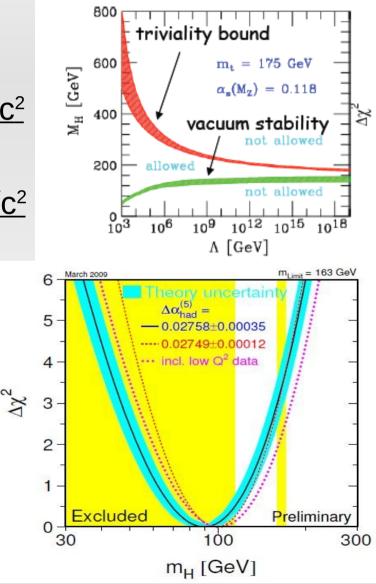
Dimension

- ATLAS is larger than CMS in size
- Tracker
 - ATLAS has the additional Transition Radiation Tracker
- Slightly better momentum resolution for CMS
- Calorimeters
 - Different layout and material used
- Magnetic field
 - CMS: Solenoidal field of 4T
 - ATLAS: Solenoidal and Toroidal field of 2T
- Muon System
 - Different layout of chambers
 - CMS has a better muon momentum resolution
- Trigger
 - CMS: 2-level trigger system
 - ATLAS: 3-level trigger system

Overview

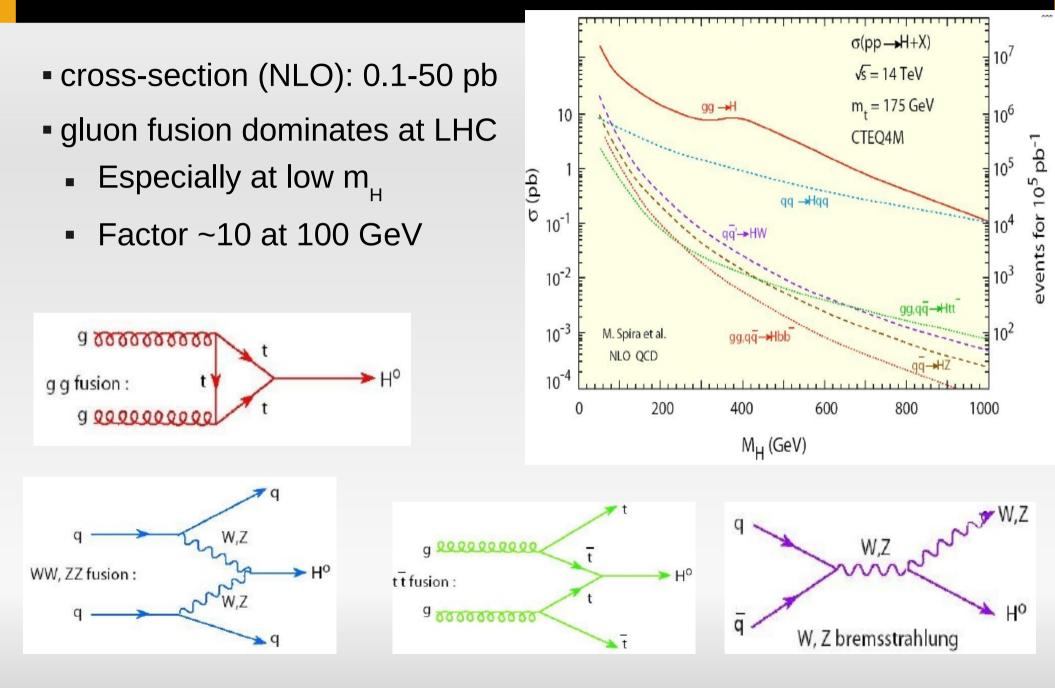
- 1. LHC & Detectors (ATLAS & CMS)
- 2. SM Higgs
 - 2.1. Mass Limits ~
 - 2.2. Production
- 3. Decay channels
 - 3.1. H->ZZ^(*) decay
 - 3.2. H->WW^(*) decay
- 4. Conclusion

2.1. SM Higgs Mass Limits


Theoretical: from finite and positive Higgs Coupling

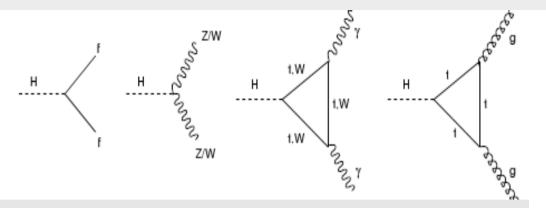
If Standard Model is valid

- up to the Planck scale ($\Lambda \approx 10^{19}$ GeV)
 - → Higgs mass: <u>130 GeV/c² < m_H < 180 GeV/c²</u>
- or up to Λ=1 TeV
 - → Higgs boson: $50 \text{ GeV/c}^2 < m_H < 700 \text{ GeV/c}^2$

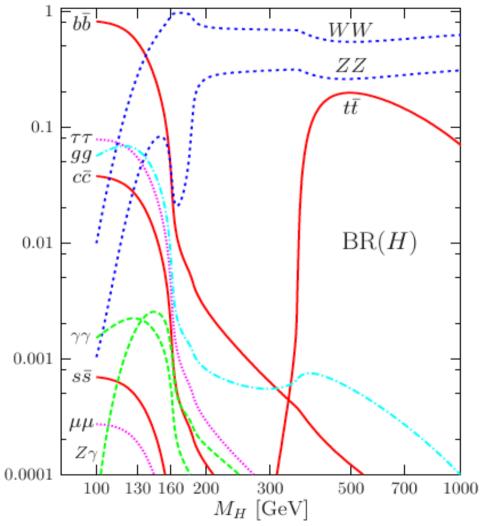

Experimental Bounds:

- Lower bound $\underline{m}_{H} > 114 \text{ GeV/c}^2$ excluded by LEP
- Upper bound $m_{\rm H} < 251 \text{ GeV/c}^2$ by fit of the
- SM to all measured observables (e.g. Z&W boson lineshape, t-quark mass)
- Tevatron excluded $160 < m_{H} < 170 \text{ Gev/c}^2$

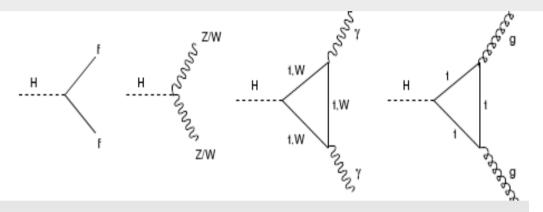
http://dorigo.wordpress.com/tag/tevatron/


2.2. SM Higgs Production

Overview

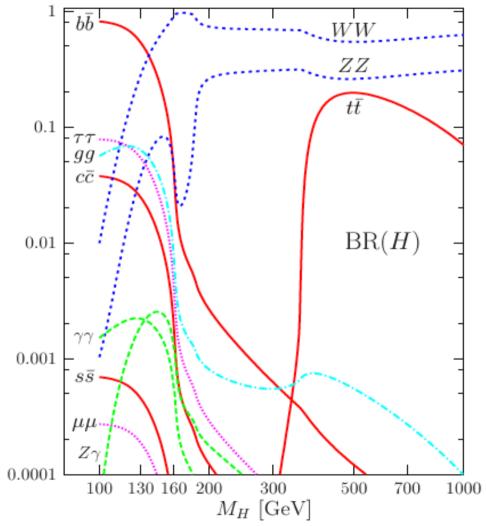

- 1. LHC & Detectors (ATLAS & CMS)
- 2. SM Higgs
 - 2.1. Mass Limits
 - 2.2. Production
- 3. Decay channels \leftarrow
 - 3.1. H->ZZ^(*) decay
 - 3.2. H->WW^(*) decay
- 4. Conclusion

3. SM Higgs Decay Channels

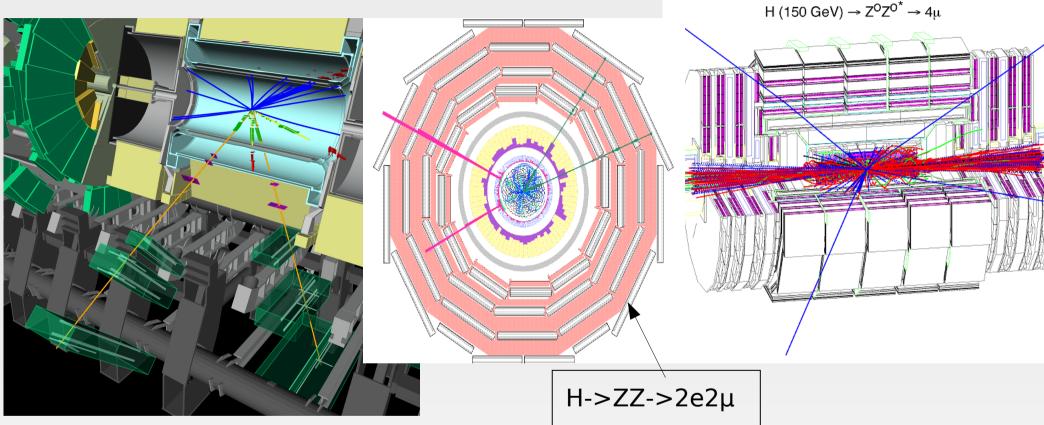


For $m_{\rm H} < 120 \ {\rm GeV/c^2}$

- bb dominant decay mode but is hard to see because of large QCD background
- yy main discovery channel due to ECAL resolution
- ττ decay



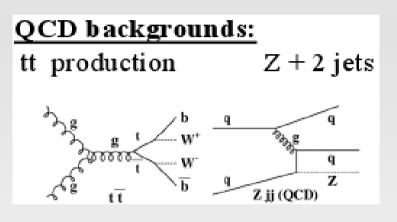
3. SM Higgs Decay Channels

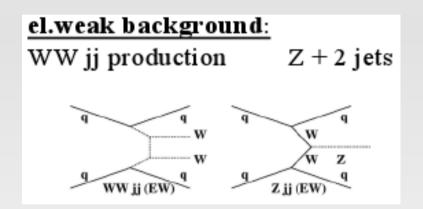


For $m_H > 140 \text{ GeV/c}^2$ H \rightarrow WW^(*) and H \rightarrow ZZ^(*) are main discovery channels

- Highest BRs for m_H>2m_w
- Clean leptonic decay modes
 - BR(W → $I\nu$): 10.8%; BR(Z → I^+I^-): 3.4%
- Cover high m_{H} region and down to $\sim 2m_{W}$

3.1. Higgs → ZZ^(*) → 4 1. Signal


www.atlas.ch/photos/events-simulated-higgs-boson.html

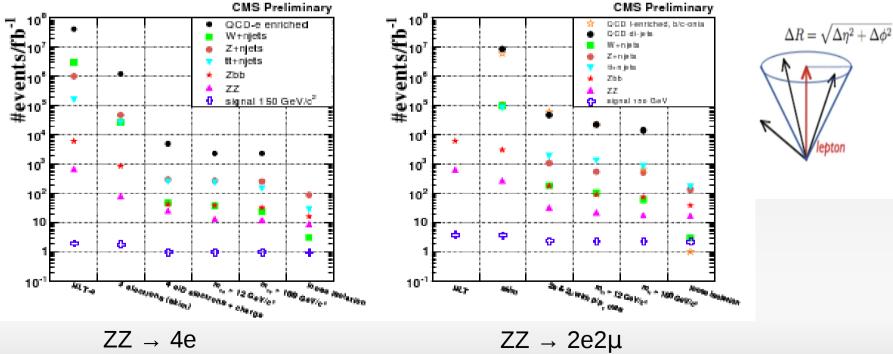

Possible topologies: 4e, 4µ, 2e2µ

- 2e2 μ has twice the rate as 4e an 4 μ channels

Cleanest discovery channel for m_H > 140 GeV/c² => "The Golden Channel"

3.1. Higgs $\rightarrow ZZ^{(*)} \rightarrow 4I$ 2. Background

- qq \rightarrow ZZ*/y*

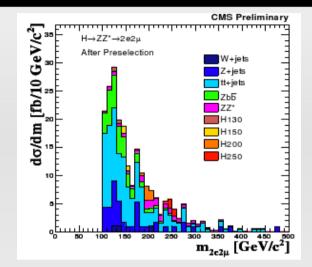

=> Irreducible, dominant background

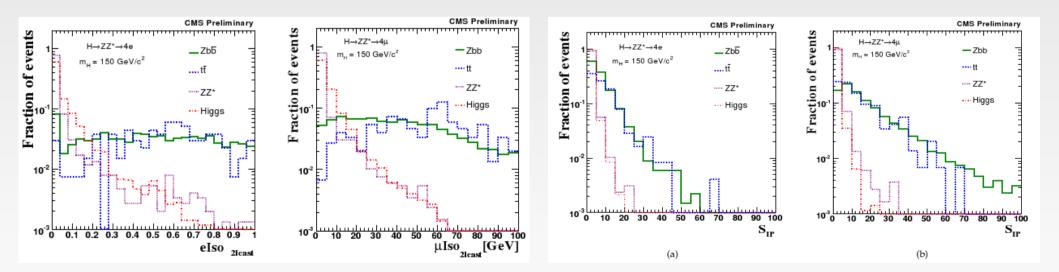
- $gg \rightarrow t\bar{t} \rightarrow WWbb$
- $Zb\overline{b} \rightarrow 2l b\overline{b}$
 - => Reducible backgrounds

=> non-isolated leptons from b decays

3.1. Higgs → ZZ^(*) → 4I 3. Analysis (I)

- Pre-selection to suppress backgrds involving fake leptons
 - Single and double lepton triggers
 - >= 2 pairs of opposite charged, matching flavoured leptons
 - $P_t^{lepton} > 5 \text{ GeV/c}$
 - $M_{\parallel} > 12 \text{ GeV/c}^2$ (all pairs) \rightarrow fake leptons of low mass hadr. resonances
 - $M_{41} > 100 \text{GeV/c}^2$ (at least one) \rightarrow search on non-excluded mass range
 - Loose isolation (η - Φ -cones arround candidates to suppress f. lept. from jets)

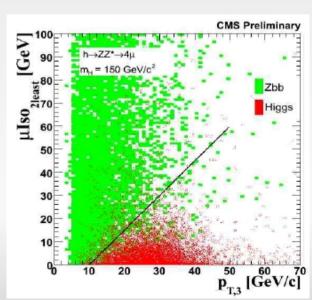

=> 98,5% of signal events pass pre-selections at m_{H} =150 GeV/c²

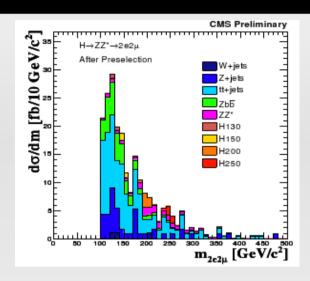

3.1. Higgs → ZZ^(*) → 4 3. Analysis (II)

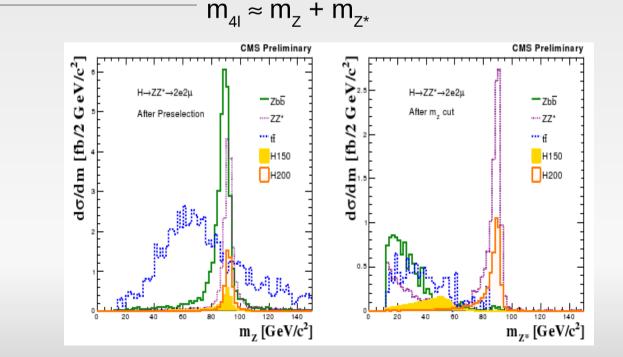
Main reducible backgrounds after preselection: Z+jets, tt and Zbb

Rejection (m_{H} independent):

- Isolation (Iso3+Iso4), Impact Parameter

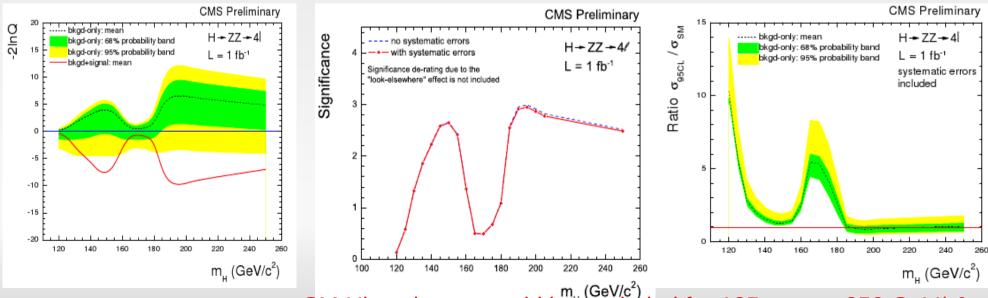

3.1. Higgs → ZZ^(*) → 4 3. Analysis (III)


Main reducible backgrounds after pre-

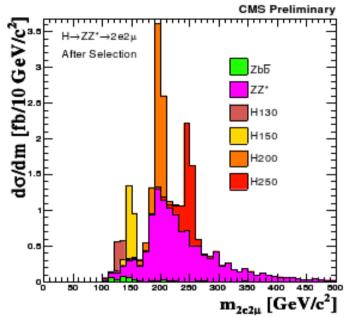

Z+jets, tt and Zbb

Rejection (m_{H} independent):

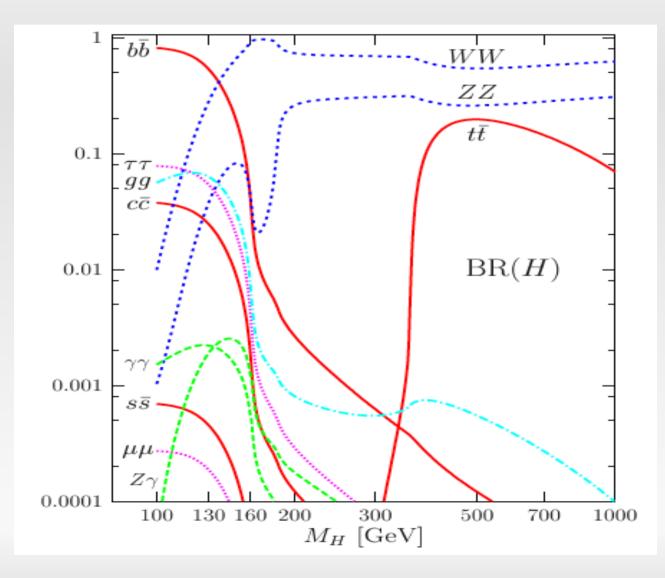
- Isolation (Iso3+Iso4), Impact Parameter
- p_{T}^{e} >7GeV/c, p_{T}^{μ} > 5GeV/c
- 50< m_z< 100GeV/c
- 20< m_{z*}< 100GeV/c


3.1. Higgs $\rightarrow ZZ^{(*)} \rightarrow 4I$ 4. Result (14 TeV, $\int Ldt=1fb^{-1}$)

- Counting experiment
 - → Quanititative Measures
 - Log-likelihood:


-ln Q = -2 N_{S+B} ln (1+ N_S/N_B)+2 N_S

- Significance
- Bayesian approach

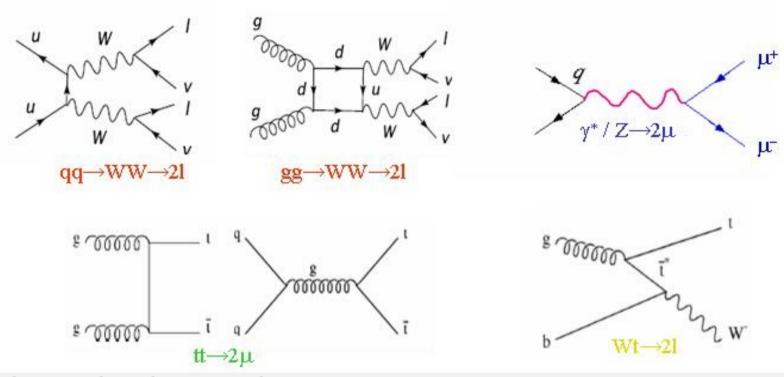

•Systematic errors small

=> SM Higgs boson could be excluded for $185 < m_{H} < 250 \text{ GeV/c}^{2}$

3.2. Higgs \rightarrow WW^(*) \rightarrow lulu

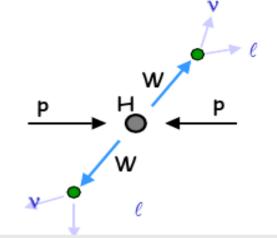
3.2. Higgs \rightarrow WW^(*) \rightarrow lulu 1. Signal

Event topology:


- 2 isolated high p_T leptons e^+e^- , $\mu^+\mu^-$, $e^\pm\mu^\pm$

- E_{τ} miss, no hadr. activity

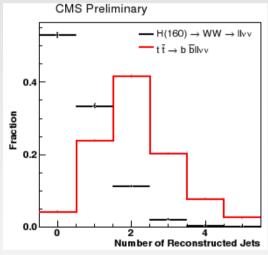
- Main discovery channel for the Higgs Boson in the mass range: $2 M_{\rm w} < m_{\rm H} < 2 M_z$


3.2. Higgs \rightarrow WW^(*) \rightarrow lulu 2. Background

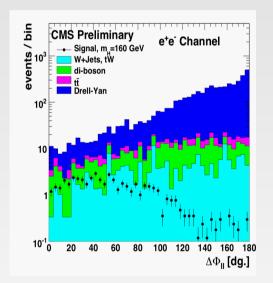
- Primary backgrounds
 - Continuum WW
 - tt $\rightarrow~2\mu$
 - $\gamma^*/Z \rightarrow 2I$
- Other backgrounds: ZW \rightarrow 3I, tWb \rightarrow 2I, ZZ \rightarrow 2I
- Most samples generated with Pythia

3.2. Higgs \rightarrow WW^(*) \rightarrow lulu 3. Analysis

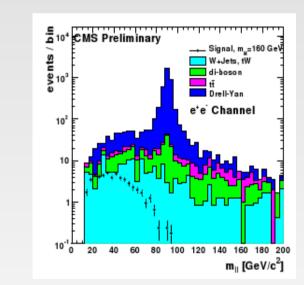
- Preselection to select leptonic WW events
 - Single lepton triggers
 - Exactly 2 isolated leptons opp. charge
 P_τ^{1,2} > 10 GeV or at least one p_τ >20 GeV

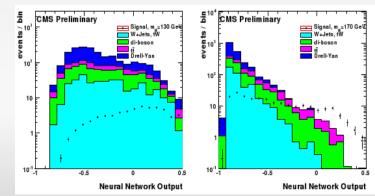


- $E_{T}^{miss} > 30 \text{ GeV} \rightarrow \text{required from the undetected neutrinos}$
- m_{\parallel} >12 GeV \rightarrow rejects bb-resonances backgrd


- Due to presence of 2 neutrinos, there is no mass peak.
 - \rightarrow Counting experiment needed for reconstruction of the Higgs mass
 - \rightarrow Accurate background (tt, WW) estimates from data are needed
 - \rightarrow Good reconstruction tools needed
- Well identified lepton reduces W+jet backgrd

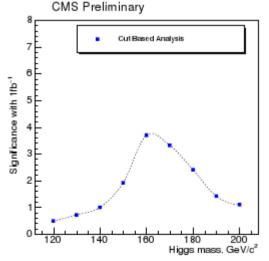
3.2. Higgs \rightarrow WW^(*) \rightarrow lulu 3. Analysis


- Main selection observables for sequential cut based analysis
- Central jet (|η| < 2.5, P_T > 15 GeV) veto
 - $\rightarrow\,$ reduce tt and tWb backgrd



• Angular correlation $\Delta \Phi_{\parallel}$ btw leptons

- Di-lepton mass
 → against leptons from Z
- \rightarrow against leptons from 2 boson decays


- E_{T}^{miss} , leptons p_{T}
- Additional variables used in NN analysis: e.g.: Δη_{II}, transverse mass of each lepton, |η| of both leptons,...

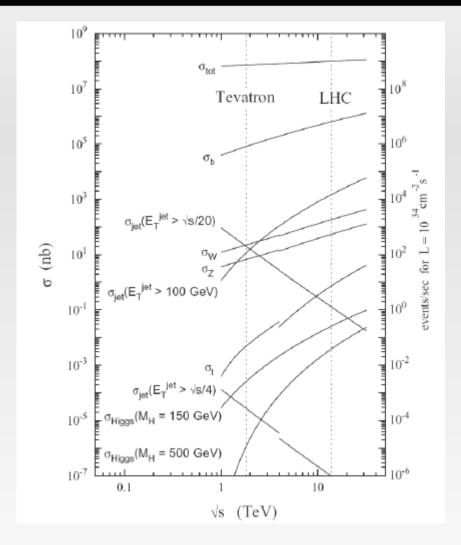
3.2. Higgs → WW^(*) → lulu 3. Result (integr. Lumin. 1fb⁻¹)

- Counting Experiment
- •Two Analysis approaches:

Cut based

	$m_{\rm H}[GeV]$					
$H \rightarrow 2\ell 2\nu$	130	150	160	170	190	
ee Preselection	24	58.7	81	82.7	58	
Final selection	6.6	12.5	20.1	21.2	11.0	
$\mu\mu$ Preselection	49	108	143	144	97	
Final selection	8.7	9	21.0	17	5.6	
$e\mu$ Preselection	61	150	195	202	139	
Final selection	11.0	20.6	31.5	33.1	12.2	

CMS Preliminary $m_{\rm H}$ [GeV] NN output Signal Background Multivariate Analysis 7.5 ± 0.8 7 120 87.3 ± 18.8 17.3 ± 1.9 89.4 ± 19.3 1305 Significance with 1fb⁻¹ 31.4 ± 3.4 121.4 ± 24.5 140 24.4 ± 2.6 42.5 ± 8.56 150160 67.5 ± 7.4 37.4 ± 7.8 66.8 ± 7.3 40.0 ± 8.0 170 зÈ 50.9 ± 5.5 180 67.3 ± 13.6 190 31.2 ± 3.4 73.3 ± 14.3 200 29.6 ± 3.2 115.8 ± 22.8 140160 200 Higgs mass, GeV/c


=> SM Higgs could be discovered for $m_{\mu} \sim 170 \text{ GeV/c}^2$

This is the Region, which Tevatron excluded on CL of 95%

Neuronal network

$H \rightarrow ZZ/WW$: 10 TeV projection

- Most important effect is change in cross-section
 - $gg \rightarrow H$: 10 TeV/14 TeV is ~0.54
 - WW/ZZ: 10 TeV/14 TeV is ~0.6
- Change of acceptance has been checked in ZZ \rightarrow 0(%)
- Very preliminary, full analyses for 10 TeV are in work
- 14 → 10 TeV is approximately equivalent to a loss of a factor 1.5 in sensitivity

4. Conclusion

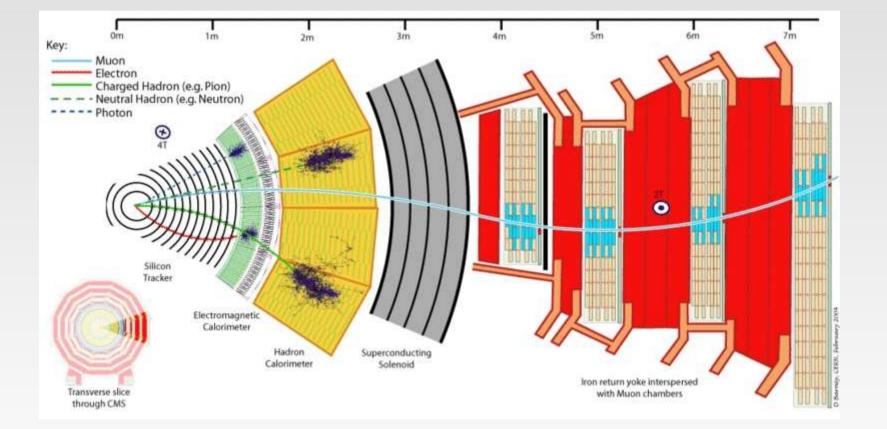
 \bullet CMS analyses for H $_{\rightarrow}$ WW and H $_{\rightarrow}$ ZZ in leptonic modes in the context of an initial scenario

- Multivariate selection slightly better than simple cut based (H $_{\rightarrow}$ WW)
- Importance of methods for background estimation and control from data
- SM Higgs could be discovered at 5σ around $m_{_{\rm H}}{\sim}170~GeV/c^2$ in WW decay mode with 1fb-1
- SM Higgs could be excluded for 185 $<\!m_{_{\rm H}}\!<$ 250 GeV/c² in ZZ decay mode with 1fb-1
- Using both channels, SM Higgs could be excluded for $m_{\rm H}{>}140~GeV/c^2$ with $1 fb^{\text{-1}}$
- 10 TeV bottom line: a loss of sensitivity by a factor \sim 1.5

References:

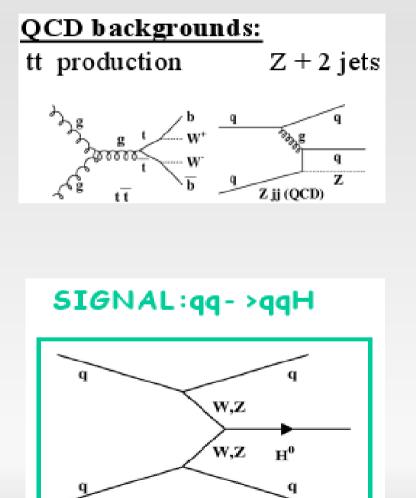
CMS Physics Analysis Summary, "Search strategy for the Higgs boson in the ZZ^(*) decay channel with the CMS experiment", 2009/02/07

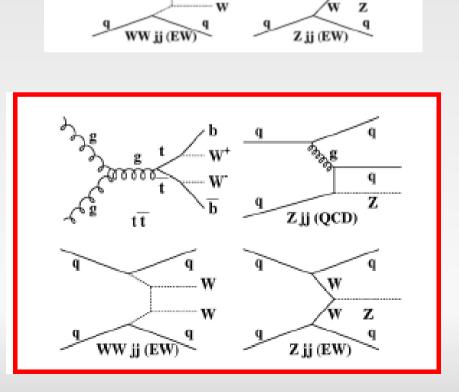
CMS Physics Analysis Summary, "Search Strategy for a Standard Model Higgs Boson Decaying to Two W Bosons in the Fully Leptonic Final State", 2009/01/29


susy08.kias.re.kr/slide/17p/p1/1st/Sengupta.ppt

ATLAS, http://www.atlas.ch/photos/events-simulated-higgs-boson.html

physics.ucsd.edu/students/courses/fall2007/physics214/farsian.pdf


Thank you for listening!


Higgs \rightarrow ZZ

$Higgs \rightarrow ZZ$

Main backgrounds (after presel.): tt, Zbb , ZZ

w

Z + 2 jets

w

el.weak background:

WW jj production