イロト イロト イヨト イ

문 문 문

Search for the supersymmetry in the trilepton final state

Moritz v. Sivers

June 16, 2009

Moritz v. Sivers

< 17 × 3 = 1

Outline

The supersymmetric extension of the SM The hierarchy problem Supersymmetry

SUSY and LHC

Search for SUSY with LHC Trilepton analysis for ATLAS

Conclusion

Moritz v. Sivers

The hierarchy problem

SUSY and LHC oo ooooooooooooooooo

3

Conclusion

The hierarchy problem

Feynman diagram of a fermion loop correction to the SM Higgs mass.

 Loop interactions from Fermions and Bosons yield corrections for Higgs mass:

$$\delta m_{H}^{2} = \frac{\lambda_{f}^{2}}{16\pi^{2}} \left[-2\Lambda^{2} + 6m_{f}^{2} ln(\frac{\Lambda}{m_{f}}) ... \right]$$

 m_H : Higgs boson mass; m_f : fermion mass; λ_f : coupling between Higgs boson and fermion; Λ : energy cut-off scale of theory

The hierarchy problem

The hierarchy problem

- ► if SM is assumed to be correct up to Planck scale then $\Lambda \sim \Lambda_{PL} \sim 10^{19}$ GeV results in divergence of Higgs mass
- experimetally Higgs mass is approximately 174 GeV from measurements of weak interactions
- \blacktriangleright compensation would need incredible fine tuning or limitation of $\Lambda \sim 1 \mbox{ TeV} \Rightarrow$ new physics

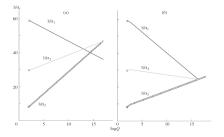
Conclusion 00

Supersymmetry

SM Higgs mass with boson and fermion loop corrections:

$$m_{H}^{2} = m_{0}^{2} + \frac{\lambda_{f}^{2}}{16\pi^{2}} \left[-2\Lambda^{2} + 6m_{f}^{2} ln(\frac{\Lambda}{m_{f}}) \dots \right] + \frac{\lambda_{B}}{16\pi^{2}} \left[\Lambda^{2} - 2m_{B}^{2} ln(\frac{\Lambda}{m_{B}}) \dots \right] \dots$$

 SUSY proposes a bosonic (scalar) super-partner for every SM fermion (and vice versa)


 \rightarrow extra contributions for the Higgs mass: two bosonic for every fermionic (due to degrees of freedom)

- if λ²_f = λ_B the quadratic divergences cancel each other due to their opposite sign, for every Λ ☺
- remaining logarithmic divergences can be removed with little fine tuning

Moritz v. Sivers

Conclusion 00

Grand Unification

- SM is assumed to be a low energy approximation of higher energy GUT but gauge couplings of SM do not exactly unify
- \blacktriangleright with new spectrum of SUSY particles couplings unify at $\sim 10^{16}~{\rm GeV} \rightarrow$ theory cutoff scale

SUSY and LHC 00 0000000000000

<ロ> (四) (四) (日) (日) (日)

3

Conclusion 00

Minimal Supersymmetric Standard Model

Superfields	Bosons	Fermions	$SU(3) \times SU(2) \times U_Y(1)$
Vector:			
G^a	Gluon g^a	Gluino \tilde{g}^a	8 1 0
V^k	Weak $W^k(W^{\pm}, Z)$	Wino, Zino \tilde{w}^k $(\tilde{w}^{\pm}, \tilde{z})$	1 3 0
V'	Hypercharge $B(\gamma)$	Bino $\tilde{b}(\tilde{\gamma})$	1 1 0
Matter:			
L_i	Sleptons $\begin{cases} \tilde{L}_i = (\tilde{\nu}, \tilde{e})_L \\ \tilde{E}_i = \tilde{e}_R \end{cases}$	Leptons $\begin{cases} L_i = (\nu, e)_L \\ E_i = e_R \end{cases}$	1 2 -1
E_i	$\tilde{E}_i = \tilde{e}_R$	$Eeptons = e_R$	1 1 2
Q_i	$\tilde{Q}_i = (\tilde{u}, \tilde{d})_L$	$Q_i = (u, d)_L$	3 2 1/3
U_i	Squarks $\begin{cases} \tilde{Q}_i = (\tilde{u}, \tilde{d})_L \\ \tilde{U}_i = \tilde{u}_R \\ \tilde{D}_i = -\tilde{d}_D \end{cases}$	Quarks $\begin{cases} Q_i = (u, d)_L \\ U_i = u_R^c \\ D_i = d_D^c \end{cases}$	3* 1 -4/3
D_i	$\tilde{D}_i = \tilde{d}_R$	$D_i = d_R^c$	3* 1 2/3
Higgs:			
H_1	H_1	\tilde{H}_1	1 2 -1
H_2	Higgs bosons $\begin{cases} H_1 \\ H_2 \end{cases}$	Higgsinos $\begin{cases} H_1 \\ \tilde{H}_2 \end{cases}$	1 2 1

The MSSM is the supersymmetric extension of the SM with minimal addition of particles

Conclusion 00

Minimal Supersymmetric Standard Model

- Every particle has a super partner with same mass and quantum numbers but spin differing by 1/2
- ► two Higgs fields needed to give mass to all leptons and quarks: $H_1 = \begin{pmatrix} H_1^+ \\ H_1^0 \end{pmatrix}$, $H_2 = \begin{pmatrix} H_2^0 \\ H_2^- \end{pmatrix}$
- ▶ neutral higgsinos and gauginos mix to give four mass eigenstates $\tilde{\chi}_1^0, \tilde{\chi}_2^0, \tilde{\chi}_3^0, \tilde{\chi}_4^0$ called neutralinos, charged higgsinos and gauginos mix to give two mass eigenstates $\tilde{\chi}_1^{\pm}, \tilde{\chi}_2^{\pm}$ called charginos

Conclusion

- ▶ SUSY allows baryon and lepton number violation \rightarrow proton could rapidly ($\sim 10^{-2}$ s) decay into lepton + meson
- ► R-Parity is a multiplicative QN defined by R = (-1)^{2S+3(B-L)} SM particles have R-Parity +1, sparticles -1
- if R-Parity is conserved:
 - \rightarrow proton lifetime becomes $\sim 10^{32}$ y
 - \rightarrow in collider experiments only an even number of sparticles can be produced
 - \rightarrow every sparticle decays into an odd number of lighter sparticles
 - \rightarrow the LSP (in most cases the neutralino) is stable \Rightarrow good candidate for CDM

SUSY and LHC oo ooooooooooooooooo Conclusion 00

SUSY symmetry breaking

 sparticles with same mass as their SM partners have not been observed

 \rightarrow SUSY is assumed to be spontanously broken \Rightarrow SUSY is also a low energy approximation of a higher energy theory

► to maintain solution to hierarchy problem sparticle masses must not be too large → soft symmetry breaking:

$$\mathfrak{L}_{MSSM} = \mathfrak{L}_{SUSY} + \mathfrak{L}_{soft}$$

- £_{soft} contains SUSY violating terms and adds 105 unknown parameters to theory ⁽²⁾
- ► exact symmetry breaking mechanism is unknown ⇒ numerous models that decrease number of parameters

3

minimal SuperGravity

- in mSUGRA symmetry breaking is caused by gravitational interactions occuring above the Planck scale
- mSUGRA parameter space is characterised by four parameters and one sign:

$$m_0; m_{1/2}; A_0; tan \beta; sign(\mu)$$

 m_0 : GUT scale unified scalar mass; $m_{1/2}$: GUT scale unifed gaugino mass; A_0 : trilinear coupling; β : ratio of the H_1 and H_2 VEVs; $sign(\mu)$: sign of the higgsino mass parameter

Conclusion 00

minimal SuperGravity

 if LSP accounts for CDM, cosmological measurements (WMAP data) can be used to tightly constrain mSUGRA parameter space

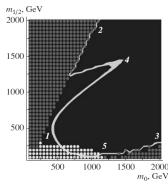


Fig. 5. Parameter-space region allowed by the WMAP requirements for $\tan\beta = 51$, $\mu > 0$, and $A_0 = 0.5m_0$ (light band). Circles cover the excluded regions: (left upper corner) region where the τ slepton is the lightest supersymmetric particle (LSP); (right lower corner) region where the radiative mechanism of electroweak-symmetry breaking does not work; and (left lower corner) region where the Higgs boson is overly light. The figures label(1) the bulk annihilation region, (2) the coannihilation region, 2000 (3) the focus-point region. (4) the funnel region, and (5) m_0 . GeV the EGRET region.

Search for SUSY with LHC

SUSY and LHC

Conclusion

Benchmark scenarios

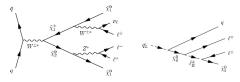
Benchmark Point	SU2	SU3	SU4			
mSUGRA Parameters						
<i>m</i> ₀	3550	100	200			
$m_{1/2}$	300	300	160			
A_0	0	-300	-400			
$tan \beta$	10	6	10			
$sign(\mu)$	+	+	+			
Cross Sections						
σ_{tot} [pb]	7.18	27.68	402.19			
$\sigma_{3\ell}$ [pb]	0.07	0.30	2.49			

▶ different benchmark scenarios were studied for potential discovery of SUSY at ATLAS:
 ⇒ SU2 (focus point region): squarks and sleptons too heavy to be produced, gauginos within reach of LHC
 ⇒ SU3 (bulk region) and SU4 (low mass region): all sparticles within reach of LHC

Search for SUSY with LHC

SUSY signature in LHC

Production	Main decay mode	Signature
$\tilde{g}, \tilde{q}\tilde{q}, \tilde{g}\tilde{q}$	$\tilde{g} \rightarrow q \bar{q} \tilde{\chi}_{1}^{0}$	$\!$
	$\left. egin{array}{c} \tilde{g} ightarrow q \bar{q} \tilde{\chi}_1^0 \ q \bar{q}' \tilde{\chi}_1^\pm \ q \bar{q}' \tilde{\chi}_1^\pm \end{array} ight brace m_{\tilde{q}} > m_{\tilde{q}} \end{array} ight brace$,
	$g\tilde{\chi}_1^0$	
	$\tilde{q} \rightarrow q \tilde{\chi}_i^0$ $\tilde{q} \rightarrow q' \tilde{\chi}_i^{\pm}$ $m_{\tilde{g}} > m_{\tilde{q}}$	
	$\tilde{q} \rightarrow q' \tilde{\chi}_i^{\pm} \int^{m_g} \gamma m_q$	
$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$	$\tilde{\chi}_1^{\pm} \rightarrow \tilde{\chi}_1^0 \ell^{\pm} \nu, \tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0 \ell \ell$	Trilepton + $\!$
	$\tilde{\chi}_1^{\pm} \rightarrow \tilde{\chi}_1^0 q \bar{q}', \tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0 \ell \ell$	Dileptons + jet + E_T
$\tilde{\chi}_1^+ \tilde{\chi}_1^-$	$\tilde{\chi}_1^+ \rightarrow \ell \tilde{\chi}_1^0 \ell^{\pm} \nu$	Dilepton + I_T
$\tilde{\chi}_{i}^{0}\tilde{\chi}_{i}^{0}$	$\tilde{\chi}^0_i \rightarrow \tilde{\chi}^0_1 X, \tilde{\chi}^0_i \rightarrow \tilde{\chi}^0_1 X'$	Dilepton + jet + $\!$
$\tilde{t}_1 \tilde{t}_1$	$\tilde{t}_1 \rightarrow c \tilde{\chi}_1^0$	Two noncollinear jets + I_T
	$\tilde{t}_1 \rightarrow b \tilde{\chi}_1^{\pm}, \tilde{\chi}_1^{\pm} \rightarrow \tilde{\chi}_1^0 q \bar{q}'$	Single lepton $+ \not\!$
	$\tilde{t}_1 \rightarrow b \tilde{\chi}_1^{\pm}, \tilde{\chi}_1^{\pm} \rightarrow \tilde{\chi}_1^0 \ell^{\pm} \nu$	Dilepton + $\!$
$\tilde{\ell}\tilde{\ell}$, $\tilde{\ell}\tilde{\nu},\tilde{\nu}\tilde{\nu}$	$\tilde{\ell}^{\pm} \rightarrow \ell^{\pm} \tilde{\chi}^0_i, \tilde{\ell}^{\pm} \rightarrow \nu_{\ell} \tilde{\chi}^{\pm}_i$	Dilepton + I_T
	$\tilde{ u} ightarrow u \tilde{\chi}_1^0$	Single lepton + $\not\!$


► typical SUSY signature includes leptons, hadron jets and large missing transverse energy ∉_T due to escaping LSPs

Moritz v. Sivers

SUSY trilepton processes

different dominant processes for trilepton final states:

- \Rightarrow SU2: direct chargino-neutralino production
- \Rightarrow SU3 and SU4: long decay chains through multiple sparticles

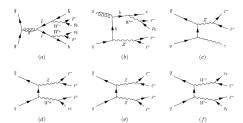
- ► exclusive signal: only trileptons from direct gaugino pair production are counted as signal ⇒ only studied for SU2
- ▶ inclusive signal: all trilepton final states are counted

Trilepton analysis for ATLAS

SUSY and LHC ○○ ○●○○○○○○○○○○○○○

・ロト ・日子・ ・ ヨト

Conclusion 00

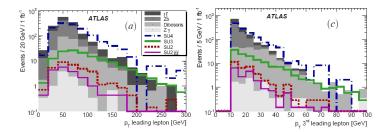

2

≺ ≣⇒

SM background

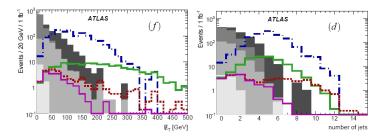
considered SM background processes:

Process	Generator	<i>σ_{LO}</i> [pb]	$\sigma_{LO} imes \epsilon_F$	k	$\sigma_{NLO} \times \epsilon_F \text{ [pb]}$	$\int \mathcal{L} dt [\mathbf{fb}^{-1}]$
SU2	Herwig	5.2	5.2	1.39	7.2	6.9
SU3	Herwig	20.9	20.9	1.33	27.7	17.1
SU4	Herwig	294.5	294.5	1.37	402.2	0.5
tŤ	MC@NLO	833.0	449.8	1.00	449.8	1.0
Zb	AcerMC	205.0	153.8	1.00	163.9	0.8
ZZ	Herwig	11.0	2.1	1.88	3.9	12.7
ZW	Herwig	27.0	7.8	2.05	16.1	3.0
WW	Herwig	70.0	24.5	1.67	40.9	1.2
Ζγ	Pythia	3.8	2.6	1.30	3.4	3.0



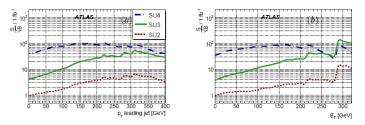
Moritz v. Sivers

SUSY and LHC


General analysing strategies

▶ low p_T threshold compared to lower lepton multiplicity events for particulary soft 3rd lepton: $p_T^{lep} > 10 \text{ GeV}$

General analysing strategies


- large missing transverse Energy (less prominent for SU2)
- hadronic activity: large for inclusive signal, more quiet for exclusive signal
 - \rightarrow different treatment in analysis

Trilepton analysis for ATLAS

 Conclusion

Inclusive signal analysis

 correlation of leading jet p_T and missing transverse energy because of recoil

 \rightarrow cut on p_T makes selection of $\not\!\!E_T$ redundant and vice versa

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

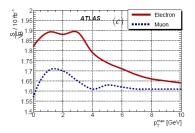
- ▶ p_T is safer variable because of not yet understood ∉_T systematics and more effective in removing SM background
 - \rightarrow cut for leading jet: $p_T^{jet1} > 200 \text{ GeV}$

Trilepton analysis for ATLAS

 Conclusion

Exclusive signal analysis

 lack of hadronic activity in direct gaugino production ⇒ leptons are "clean" and isolated
 → require lepton track isolation for discrimination against b-quark decay leptons: E_T < 10 GeV in a cone of ΔR = 0.2 Trilepton analysis for ATLAS


・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

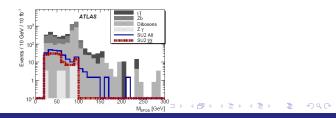
3

Conclusion 00

Exclusive signal analysis

▶ p_T^{max} distribution of well isolated SUSY leptons tends to be low → background discrimination against high p_T leptons from b-quark decay by setting $p_T^{lep} < 1$ GeV for muons and $p_T^{lep} < 2$ GeV for electrons

Trilepton analysis for ATLAS


 Conclusion

Exclusive signal analysis

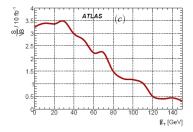
- ▶ decay involves neutralino decaying via virtual Z Boson to "Same Flavour Opposite Sign" (SFOS) lepton pair
 → require ≥ 1 SFOS lepton pair for discrimination against tt background
- in Z boson background, SFOS lepton pair invariant mass clusters around Z boson mass

 \rightarrow rejection of SFOS lepton pairs with mass around 10 GeV of

Z boson mass: $|M_{SFOS} - M_Z| > 10 \text{ GeV}$

Moritz v. Sivers

Trilepton analysis for ATLAS


▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

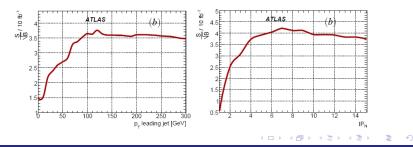
3

Conclusion 00

Exclusive signal analysis

- b direct gaugino production leads to almost back to back LSPs in final state ⇒ lower ∉_T
- even lower ∉_T from background decays that do not produce neutrinos such as ZZ or Zγ

Trilepton analysis for ATLAS


 Conclusion

Exclusive signal analysis

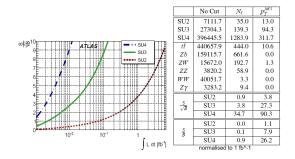
lack of hadronic activity

 \rightarrow jet veto: require leading jet $p_T^{jet1} < 100~{\rm GeV}$ to reduce $t\bar{t}$ background

▶ leptons from direct gaugino production will be prompt leptons → require lepton impact parameter $IP_N < 6$ to reduce $t\bar{t}$ background

Moritz v. Sivers

Trilepton analysis for ATLAS


SUSY and LHC

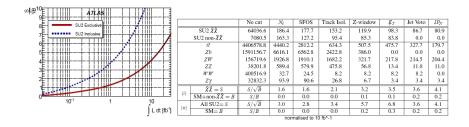
(日) (四) (日) (日) (日)

3

Conclusion

Results for inclusive analysis

 5σ discovery with statistics of a few hundred pb⁻¹ to a few fb⁻¹ depending on benchmark scenario (in absence of systematics)

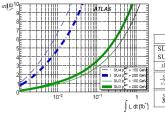

Moritz v. Sivers

Trilepton analysis for ATLAS

SUSY and LHC

Conclusion

Results for exclusive analysis



 5σ discovery with a few tens of fb⁻¹ (in absence of systematics) Trilepton analysis for ATLAS

SUSY and LHC 00 0000000000000 Conclusion 00

Preparation for first ATLAS data

• inclusive analysis for first LHC data of 200 pb^{-1} @ 10 TeV

		No Cut	N_{ℓ}	$p_T^{jet1} > 150 \text{ GeV}$	$p_T^{jet1} > 200 \text{ GeV}$		
Ì	SU3	1630.0	7.2	5.5	4.7		
	SU4	34568.0	107.5	41.4	20.4		
l	tī	40572.0	32.1	1.9	0.9		
Ì	$\frac{S}{\sqrt{B}}$	SU3	1.3	4.0	5.0		
	\sqrt{B}	SU4	19.0	29.9	21.4		
	SB	SU3	0.2	2.9	5.2		
۱ l	B	SU4	3.3	21.6	22.5		
1	normalised to 200 ph^-1						

 5σ discovery for SU3 and SU4 can be achieved with original threshold of p_T^{jet1} > 200 GeV (in absence of systematics)

Conclusion

- SUSY elegantly solves the SM hierarchy problem
- SUSY is a GUT but also just a low energy approximation of a higher energy theory
- SUSY lacks description of quantum gravity but could provide a step towards it by its symmetry breaking mechanism
- trilepton analysis for ATLAS:
 - \rightarrow exclusive trilepton signature is not an early data channel \rightarrow inclusive trilepton signature is excellent candidate for early discovery of new physics at ATLAS, particularly for low mass scenario
 - \rightarrow essential is the further development of methods to estimate
 - $t\bar{t}$ background

Bibliography

- The LEP Collaborations, "A Combination of Preliminary Electroweak Measurements and Constraints on the Standard Model." arXiv:hep-ex/0511027v2, 2005.
- V. Gladyshev and D. I. Kazakov, "Supersymmetry and LHC", Yadernaya Fizika, Vol. 70, No. 9, pp. 15981613, 2007.
- Christina Jane Potter, "The Search for Evidence of Supersymmetry in Trilepton Final States at the LHC", Royal Holloway, University of London, 2009.
- Stephen P. Martin, "A Supersymmetry Primer" arXiv:hep-ph/9709356v5, 2008.

Moritz v Sivers