Top-quark physics with early LHC data

T. Barillari Seminar: Physics at the Large Hadron Collider München, 14 July 2009

- Introduction
- tt pair production
- Dilepton, lepton+jets and all-jets events
- Event selection
- tt reconstruction methods
- Results
- Conclusions

The top quark differs from the other quarks, it is the heaviest known elementary particle

- It can decay in t → Wq (q = d, s, b),
 The Ws and Wd final states expected to be suppressed relative to the Wb by the square of the CKM matrix elements V_{ts} and V_{td}
 ▷ 0.9990 < V_{tb} < 0.9993
- ► Main top decay: t → Wb (> 99.8%)

Top production at hadron colliders

- With a $m_t = 180 \text{ GeV}$ the predicted decay width is $\Gamma \approx 1.56 \text{ GeV}$, and its lifetime $\tau = \Gamma^{-1} \approx 5 \times 10^{-25} \text{ s}$
 - ▷ The top quark decays before it can interact via QCD
- The final states for the leading tt-production process can be divided in three main classes:
 - ▷ Dilepton: $t\bar{t} \to W^+ b W^- \bar{b} \to \bar{l} \nu_l b l' \overline{\nu_{l'}} \bar{b}$ (10.3%)
 - $\begin{array}{ll} \triangleright & \mbox{Lepton+jets:} \\ t\overline{t} \rightarrow W^+ b W^- \overline{b} \rightarrow q \overline{q}' b l \overline{\nu_l} \overline{b} + \overline{l} \nu_l b q \overline{q}' \overline{b} \end{array} \tag{43.5\%}, \end{array}$
 - ▷ All-jets: $t\overline{t} \rightarrow W^+ bW^- \overline{b} \rightarrow q\overline{q}' bq'' \overline{q}''' \overline{b}$ (46.2%),

tt production: total cross section

 10^{9} 10⁹ 10^{8} 10⁸ σ_{tot} 10^{7} 10^{7} **Tevatron** LHC 10^{6} 10⁶ 10^{5} 10⁵ $\sigma_{\rm b}$ 10^{4} 10⁴ 10³ 10^{3} cm' $\sigma_{jet}(E_T^{jet} > \sqrt{s}/20)$ 10^{33} , 10^{2} (qu) 10^{1} σ_W 10^{1} events/sec for σ_{7} 10⁰ 10^{0} $\sigma_{iet}(E_T^{jet} > 100 \text{ GeV})$ 10⁻¹ 10^{-1} 10⁻² 10⁻² 10⁻³ 10^{-3} $\sigma_{jet}(E_T^{jet} > \sqrt{s}/4)$ 10-4 10^{-4} $\sigma_{\text{Higgs}}(\text{M}_{\text{H}} = 150 \text{ GeV})$ 10⁻⁵ 10⁻⁵ 10^{-6} 10^{-6} $\sigma_{Higgs}(M_{H} = 500 \text{ GeV})$ 10^{-7} 10^{-7} 10 0.1 (TeV) \sqrt{S}

proton - (anti)proton cross sections

The top quark has been observed only at Tevatron

- ▷ $p\overline{p}$: $\sqrt{s} = 1.8 \text{ TeV}_{RunI}$, and 1.96 TeV_{RunII}
- LHC will be a top factory
- Total cross section for tt-production is about a factor of 100 larger at LHC than at Tevatron
- $\sigma_{t\bar{t}}(1.80 \,\mathrm{TeV}) = 5 \,\mathrm{pb}$
- $\sigma_{t\bar{t}}(1.96 \,\text{TeV}) = 7 \,\text{pb}$
- $\sigma_{t\bar{t}}(14.0 \,\text{TeV}) = 800 \,\text{pb}$

T. Barillari, MPI München

Top-quark physics with early LHC data

W.J. Stirling, 1998 14 July 2009 4

tt production at Tevatron and LHC

$q\overline{q}$ annihilation	\sqrt{s}	$\sigma_{\rm q\bar{q}\rightarrow t\bar{t}}/\sigma_{\rm t\bar{t}}$	q	,t
	1.8TeV	90%	0000	
	1.96TeV	85%	\overline{q}	
	14TeV	5%		`t
			g g	
Gluon fusion	\sqrt{s}	$\sigma_{\rm gg \rightarrow t\bar{t}}/\sigma_{\rm t\bar{t}}$	g 00000	<i>t</i>
	1.8TeV	10%		
	1.96TeV	15%	a 20000	$- \overline{t}$
	14TeV	95%	5 00000	
			g g g g g g g g g g g g g g g g g g g	— t
			g - C	

• At LHC the gg $\rightarrow t\bar{t}$ dominates over the $q\bar{q} \rightarrow t\bar{t}$

T. Barillari, MPI München

Top-quark physics with early LHC data

Single top production at Tevatron and LHC

- Large total cross-section for single top production (40%)
- W-boson and gluon $\sigma_{\rm EWt}/\sigma_{\rm singlet}$ \sqrt{s} fusion. It includes the 60% 1.8TeV W 65% t-channel contribution 1.96TeV g 9000 77% 14TeV or Wg b $\sigma_{\rm EWt}/\sigma_{\rm single\,t}$ \sqrt{s} Associated production 5% 1.8TeV of top quark and 5% 1.96TeV W-boson, Wt 20% 14TeV \sqrt{s} $\sigma_{\rm EWs}/\sigma_{\rm single\,t}$ W + s-channel 35% 1.8TeV production 30% 1.96 TeV3% 14TeV \overline{b} T. Barillari, MPI München Top-quark physics with early LHC data 14 July 2009

Experimental challenges

- tt events provide:
 - Jets with a wide spectrum of p_⊥
 - ▷ b-jets
 - Lepton(s)
 - Missing ET
 - ▷ ... etc., etc.
- The whole detector capability at work

Dilepton events: $t\bar{t} \rightarrow WWb\bar{b} \rightarrow (|\nu)(|\nu)b\bar{b}$

- It represents about 1/9 of all tt events
- Both Ws decay into a lepton-neutrino pair
- The event has two charged leptons, two neutrinos and two b-jets
 - A clean sample of top quark can be achieved by requiring two high p_⊥ leptons and the presence of *E*_⊥
- Important to tag the b-jets:
 - Reduces the background
- Top reconstruction limited by the two escaping neutrinos

Golden plated event $t\bar{t} \rightarrow WWb\bar{b} \rightarrow (I\nu)(jj)b\bar{b}$

- The "lepton+jets" is the golden channel: one W decays leptonically (e, μ) and the other W decays hadronically
 - Clean trigger from the isolated lepton
- The reconstruction starts with the W mass:
 - JES using the W
- Important to tag the b-jets:
 - Reduces the background
 - Clean top quark samples
- Main background comes from W + Jets events
- ► S/B ≈ 10

All-jets events: $t\overline{t} \rightarrow WWb\overline{b} \rightarrow (jj)(jj)b\overline{b}$

- The all-jets channel is the most copious tt final state, 4/9 of all tt events. Here both Ws decay hadronically
- The signal is overwhelmed by the background coming from QCD multijets production
- Use trigger to reduce background
 - The ATLAS multijet-trigger
- The reconstruction starts with the W mass:
 - JES using the W
- Important to tag the b-jets:
 - Reduces the background
 - Clean top quark samples
- S/B $\approx 10^{-4}$ without btagging

Lepton+jets event selection

- Typical ATLAS event selection for Lepton+jets tt events:
 - $\,\triangleright\,\,$ 3 jets with $p_{\perp} > 40\,\text{GeV}$
 - $\triangleright~1$ jet with $p_{\perp}>20\,\text{GeV}$
 - $arphi \ |\eta| < 2.5$
 - ▷ Exactly one isolated electron or muon with:
 - $hinstriangle \ {\sf p}_{\perp}>$ 20 GeV, $|\eta|<$ 2.5
 - Muons reconstructed with STACO; electrons with eGamma
 - \triangleright MET > 20 GeV
 - b-tag used on one or two jets to decrease the combinatorial background (no b-tag with early data)
- Use different methods to reconstruct the top mass
- With early data in ATLAS one can use e.g. Maximum "P_⊥ method", to combine the triplet of Cone4 or AntiKt4 jets with max P_⊥ to obtain the top mass, no b-tag involved
- Similarly in CMS, with early data one can combine Cone5 jets (3 out of the 4 selected) that give the highest summed E_⊥ to reconstruct the hadronic top mass.

Lepton + jets event

Top-quark physics with early LHC data

Top mass with 10 pb^{-1} of CMS data

Basic event selection:

- hinspace 1 isolated μ with p $_{\perp} > 30\,{
 m GeV}$ and $|\eta| < 2.1$
- Events with two leptons are rejected to reduce contamination from dilepton tt events
- ▷ At least 4 jets with $|\eta| < 2.4$, no b-tag jet used in the analysis
- Used Cone5 jets
- $\,\triangleright\,$ One jets has $E_{\perp} > 65\, GeV,$ the other 3 jets have $E_{\perp} > 40\, GeV$
- $\triangleright~$ To improve the S/B, it is required that the muon has a $E_{iso}^{calo} < 1\,GeV$ and a $dR_{min} > 0.3$, distance to the next closest jet

With this event selection 128 signal events are expected with the early 10 pb⁻¹ CMS data, with a selection efficiency of 10%. together with 25 other tt final state events, 45 (7) W+jets (Z+jets) events, and 11 QCD background events.

Top mass with first 10 pb^{-1} of CMS data

► Jet multiplicity distribution for events passing the final selection (left plot), and invariant mass of the 3 jets with the highest vectorially summed E_{\perp} (right plot)

W mass with first 10 pb⁻¹ of CMS data

Invariant mass of two jets which best correspond to the nominal value of M_W (right plot). Missing transverse energy for the events passing the event selection (left plot)

Top mass with the Maximum p_ method

- Top mass with 145 pb⁻¹ at $\sqrt{s} = 10$ TeV of ATLAS data (E. Rauter PhD today)
- Top reconstruction
 - Take jet triplet maximasing p_⊥ as top candidate
 - Method chooses the correct combination in 25% of the cases
 - Left upper plot shows the top reconstructed in the electron channel
- W reconstruction
 - Boost to the top CMS system and take the closest two jets in the triplet as W candidate
- Bkgd here is, inclusive Z → II, and W → Iν + jets, diboson events, QCD, all hadronic and single top events

background: combinatorial, QCD,top-mass dependent, remaining physics bkg

Top mass Maximum p₁ *method (Emanuel's results)*

- simulated data with an integrated luminosity of 145 pb⁻¹, the top quark mass was reconstructed in the leptons plus jets decay channel using local hadron calibrated Kt4 jets resulting in a top mass e.g. in the electron channel
 - before in-situ calibration: $m_{t}^{electron} = 166.55 \pm (2.38)_{stat} \left(\begin{array}{c} +9.58\\ -9.10 \end{array} \right)_{syst} \text{GeV}$
 - after in-situ calibration: $m_t^{electron} = 167.22 \pm (2.36)_{stat} (^{+3.9}_{-2.49})_{syst} \text{ GeV}$
- compatible with input top mass value of 172.5 GeV.
- before the application of the in-situ calibration, the dominant errors are the light jet energy scale and the combinatorial background
- after application of the in-situ calibration, only the latter remains dominant
- with samples of higher statistics the combinatorial background is expected to decrease and the fitting procedure is expected to become more stable

Dilepton events in 10 pb⁻¹ of CMS data

• Top-quark pair production in pp collisions at $\sqrt{s} = 14$ TeV with two leptons in the final state (μ or e)

Expected number of dilepton events as function of jet multiplicity in ee events (top left), $\mu\mu$ (top right), $e\mu$ events (bottom left), all channels combined (bottom right)

Dilepton results with 10 pb⁻¹ of CMS data

- Clear observation of the signal expected in the sample with 2 or more jets, with S/N $\approx 2/1$ in all channel combined and a S/N $\approx 25/1$ in the e μ channel
- With first data the top pair production cross-section is expected to be measured with a stat. uncertainty of 9% (13%) using the all dilepton channel ($e\mu$ channel) and with comparable syst. uncertainty
- Many improvements of understanding the systematics effects will come with with the first data

- A lot of work has been done and good results has been achived to study tt events with the first LHC data by ATLAS and CMS
- We have seen that with a basic but robust event selection, ATLAS and CMS can both have a first measurement of the mass of the top and the mass of the W in e.g. lepton+jet channel and with e.g. 10 pb-1 of CMS data
- We will be able to control better the statistics and the syestematics uncertanties, once we will understand better the performance of our detectors
- A better understanding of the detectors (JES, QCD background, ...), will allow us to e.g explore the all-jet tt channel, the single top channel, probe for potential new physics

