
October 19-21 , 2009 

Probability, Statistics and Data Analysis 

Topics: 
•  Introduction to Probability and Statistics 
•  Standard distributions 
•  Estimation of parameters  
•  Confidence, probability intervals and limits 
•  Goodness-of-fit tests, hypothesis testing 
•  Bayesian and frequentist approaches  

   + 
•  Introduction to BAT 
•  Analyze data sets, extract limits on right-handed W, existence of 
double-beta-decay 

Allen Caldwell, Daniel Kollár (CERN) and Kevin Kröninger (U. Göttingen) 
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October 19-21 , 2009 

Structure of Block Course 
Monday: 

 Morning – lecture on basic distributions (binomial, Poisson, Gauss) along 
with examples, central limit theorem 

 Afternoon – introduction to BAT, installation on laptop, try out examples on 
your laptop 

Tuesday: 
 Morning – lecture on learning from data, Bayes Theorem, parameter 

estimation, calculating probability intervals and limits 
 Afternoon – analyzing charged current deep inelastic scattering data on your 

computer to find limits on the mass of a putative right-handed W boson 

Wednesday: 
 Morning – relationship to other approaches, hypothesis testing, goodness-of-

fit tests, introduction to frequentist approach and discussion 
 Afternoon – analyze double beta decay spectrum to extract signal strength in 

the presence of background, estimate parameter values, test goodness-of-fit  
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October 19-21 , 2009 3 IMPRS Block Course Figure 1: Paradigm for data analysis. Knowledge is gained from a comparison of model
predictions with data. Intermediate steps may be necessary, e.g., to model experimental
conditions.

the experiment many times under identical conditions. This is possible be-
cause the model is a mathematical construction which allows the calculation
(or simulation) of frequencies of outcomes. The predictions from the model
cannot usually be directly compared to experimental results. An additional
step is needed, either to modify the predictions to allow for the experimental
effects, or to undo the experimental effects from the data. Obviously, an ac-
curate description of the experimental effects is necessary to produce reliable
conclusions.

The function g(!y|!λ, M) gives the relative frequency of getting result !y
assuming the model M and parameters !λ. It should satisfy:

g(!y|!λ, M) ≥ 0 (1)

and
∑

i

g(yi|!λ, M) = 1 or

∫

g(!y|!λ, M) d!y = 1 (2)

depending on whether discrete or continuous values are measured. In the
following, we will write formulae for the continuous case; the modification
for the discrete case will be clear. Note that the normalization requirement
is often discarded when only relative probabilities of outcomes are needed.
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Learning from Data 



Types of Probability 

Direct probability 

•  we have a model and can predict the relative frequency of possible 
outcomes.  E.g., to evaluate the frequency of possible outcomes from 
flipping a coin (heads/tails), we start by making a model:    

‘the coin is fair and does not change its properties over time; by 
symmetry, H, T each occur with the same frequency in the long term’ 

•  we have frequency of outcomes from measurements, and use this to 
calculate future outcomes (e.g., insurance companies).  Here it is 
assumed that the conditions under which the data were accumulated 
apply for the calculation of future frequencies. 

We then use our models to calculate frequencies of possible outcomes. 
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Imagine we flip a coin 10 times, and get the following result: 

   T H T H H T H T T H 

We now repeat the process with a different coin and get 

   T T T T T T T T T T 

Which outcome has higher probability ? 
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Probability and Intuition 



Take a model where H, T are equally likely.  Then, 

 outcome 1  
And 

 outcome 2                                   exactly the same ! 

prob = (1/2)10

prob = (1/2)10

Something seem wrong with this result ?  This is because we evaluate in 
our minds many probabilities at once (there is usually more than one 
probability which can be assigned to a data set).  The result above is the 
probability for any sequence of ten flips of a fair coin.  Given a fair coin, 
we could also calculate the chance of getting n times H: 

(
10
n

) (
1
2

)10
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Probability and Intuition 



And we find the following result: 
n p
0 1·2−10

1 10·2−10

2 45·2−10

3 120·2−10

4 210 ·2−10

5 252 ·2−10

6 210 ·2−10

7 120 ·2−10

8 45 ·2−10

9 10 ·2−10

10 1 ·2−10

There are many more ways to get 5 H 
than 0, so this is why the first result 
somehow looks more probable, even 
if each sequence has exactly the same 
probability in the model. 

Maybe the model is wrong  and one 
coin is not fair ?  How would we test 
this ?  This is what we do in science – 
test validity of models. 
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In scientific work, what we want to know is not a direct probability, but 
something different: 

•  which model among several possible models is the best ? 

•  what are the best parameter values in the context of a model ? 

•  can we rule out certain ranges of parameters ? 

Here, inductive reasoning is needed.  There are different approaches 
employed (Bayesian reasoning, frequentist reasoning). 
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A different (more general) kind of probability – ‘degree of belief’ 

e.g., actual ‘probability’ for heads is not known, and can only be 
determined with an ∞ number of flips:  i.e., it can never be completely 
known.  So (Bayesians) only talk about degree-of-belief for possible 
values.  Frequentists talk about a true but unknowable probability.   

Proposition   Knowledge=justified belief 

The purpose of experiment and analysis is to give you justification for 
your beliefs. 
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Statistical and Systematic Uncertainties 

Other types of uncertainties, e.g., from miscalibrations, are called 
systematic uncertainties.  Systematic uncertainties are ‘degrees-of-
belief’, and require experience and hard-work to evaluate.  

Most measurements in particle, nuclear,  and astrophysics are counting 
experiments, where the number of counts for a particular results (e.g., 
heads in a coin flip) can fluctuate randomly.  We call the resulting 
uncertainty in a result the statistical uncertainty.  The model used to 
calculate the uncertainty depends on the physical situation.  The most 
common distributions which result are the Binomial Distribution, the 
Poisson Distribution of the Gauss Distribution  this lecture.  



Binomial Distribution 
Bernoulli Process: random process with exactly two possible outcomes 
which occur with fixed probabilities (e.g., flip coin, heads or tails, 
particle recorded/not recorded, …).  Probabilities from symmetry 
argument or other information. 
Definitions: 
p is the probability of a ‘success’ (heads, detection of particle, …)  0≤p≤1 
N independent trials (flip of the coin, number of particles crossing detector, …) 
r is the number of successes (heads, observed particles, …) 0 ≤ r≤N 

Then  

pqqp
rNr

NpNrf rNr −=
−

= − 1      where
)!(!

!),;(

Number of combinations - Binomial coefficient 

Probability of r successes in N trials 
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Derivation: Binomial Coefficient 

Ways to order N distinct objects is N!=N(N-1)(N-2)…1 
N choices for first position, then (N-1) for second, then (N-2) … 

Now suppose we don’t have N distinct objects, but have subsets  of 
identical objects.  E.g., in flipping a coin, two subsets (tails and heads).  
Within a subset, the objects are indistinguishable. For the ith subset, the 
ni! combinations are all equivalent. The number of distinct combinations 
is then 

€ 

N!
n

1
!n

2
!⋅ ⋅ ⋅n

n
!
   where   n

ii
∑ = N

For the binomial case, there are two subclasses (Success&failure, heads 
or tails, …)  The combinatorial coefficient is therefore 

€ 

N
r
 

 
 

 

 
 =

N!
r!(N − r)!
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Some Notation 

  1dx )f(x;

     1);(

-

=

=

∫

∑
∞

∞

θ

θ
i ixf For discrete x 

For continuous x 

We impose the normalization condition for probabilities and probability 
densities: 

  1xd );xf(

     1);(

-

,

=

=

∫

∑∑
∞

∞





θ

θ
i

ij
j

xf

In the case that x and/or θ have multiple components: 

Multidimensional integral 
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Notation-cont. 

Cumulative distribution function: 

€ 

F(a) = f (xi;θ)
i=−∞

a

∑

F(a) = f (x;θ)dx
−∞

a

∫

0 ≤ F(a) ≤1

€ 

P(a ≤ x ≤ b) = F(b) − F(a) Equality may not be possible for discrete case

For u(x), v(x) any two functions of x, E[u+v]=E[u]+E[v].  For c,k 
any constants, E[cu+k]=cE[u]+k. 

€ 

E[x] = xi f (xi;θ)
i=−∞

∞

∑

E[x] = x f (x;θ) dx
−∞

∞

∫

E[u(x)] = u(x) f (x;θ) dx
−∞

∞

∫

Expectation value: 
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Notation-cont. 

The nth moment variable is given by: 

€ 

αn ≡ E[x
n ] = xn

−∞

∞

∫ f (x;θ) dx

The nth central moment of x: dxxfxxEm nn
n );()(])[( 11 θαα ∫

∞

∞−

−=−≡

µ, σ (or σ2) are most commonly used measures to characterize a 
distribution. 

σ 2≡V[x]≡m2=α2-µ2 is known as the variance and σ is known as the 
standard deviation or ‘root mean square’. 

µ ≡ α1 =E[x] is known as the mean 

For discrete probabilities, integrals ⇒ sums in obvious way 
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Notation-cont. 
Other useful characteristics:   
•  most-probable value (mode) is value of x which maximizes f(x;θ) 
•  median is a value of x such that F(xmed)=0.5  

x 

f(x) 
mode  

mean 

median 
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Binomial Distribution 

p is the probability of a ‘success’ (heads, detection of particle, …)  0≤p≤1 
N independent trials (flip of the coin, number of particles crossing detector, …) 
r is the number of successes (heads, observed particles, …) 0 ≤ r≤N 

Then  

pqqp
rNr

NpNrf rNr −=
−

= − 1      where
)!(!

!),;(

Number of combinations - Binomial coefficient 

Probability of r successes in N trials 
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Binomial Distribution-cont. 

E[r]=Np                                       
V[r]=Np(1-p) 

P=0.5  N=4 P=0.5  N=5 

P=0.5  N=15 P=0.5  N=50 

P=0.1  N=5 P=0.1  N=15 

P=0.8  N=5 P=0.8  N=15 

Notes:  
•  for large N, p near 0.5 
distribution is approx. 
symmetric 
•  for p near 0 or 1, the 
variance is reduced 
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Example 

Example: 
You are designing a particle tracking system and require at least 
three measurements of the position of the particle along its trajectory 
to determine the parameters.  You know that each detector element 
has an efficiency of 95%.  How many detector elements would have 
to ‘see’ the track to have a 99% reconstruction efficiency ? 

Solution: 
We are happy with 3 or more hits, so our probability is 

3
( 3; , ) ( ; , ) 0.99

N

r
f r N p f r N p

=

≥ = >∑
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Example-cont. 

3 3 3 3

3 4 3 3

4 4 4 4

3!3 (3; 3,0.95) (0.95) (1 0.95) 0.95 0.857
3!(3 3)!
4!4 (3; 4,0.95) (0.95) (1 0.95) 4(0.95) (0.05) 0.171

3!(4 3)!
4!(4; 4,0.95) (0.95) (1 0.95) (0.95) 0.815

4!(4 4)!
5!5 (3; 5,0.95) (0

3!(5 3)!

N f

N f

f

N f

−

−

−

= = − = =
−

= = − = =
−

= − = =
−

= =
−

3 5 3 3 2

4 5 4 4

5 5 5 5

.95) (1 0.95) 10(0.95) (0.05) 0.021

5!(4; 5,0.95) (0.95) (1 0.95) 5(0.95) (0.05) 0.204
4!(5 4)!
5!(5; 5,0.95) (0.95) (1 0.95) (0.95) 0.774

5!(5 5)!

f

f

−

−

−

− = =

= − = =
−

= − = =
−

0.986 

0.999 

With 5 detector layers, we have >99% chance of getting at least 3 hits 
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Law of Large Numbers 
Suppose we anticipate making N measurements, what can we say 
about the anticipated number of successes r ?  The distribution of r for 
many experiments will be a binomial distribution, and fN =r/N is an 
uncertain number. 

€ 

< fN >≡
1
N

< r >=
Np
N

= p  

The standard deviation for fN  is

σ ( fN ) ≡ 1
N
σ (r) =

Np(1− p)
N

=
p(1− p)
N

This ‘Law of Large Numbers’ states that as N becomes very large it will 
be very improbable to measure values of fN very different from p. 
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Poisson Distribution 

A Poisson distribution applies when we do not know the number of trials 
(it is a large number), but we know that there is a fixed probability of 
‘success’ per  trial, and the trials occur independently of each other.   

High energy physics example: beams collide at a high frequency (10 
MHz, say), and the chance of a ‘good event’ is very small.  The resulting 
number of events in a fixed time will follow a Poisson distribution.  A 
single trial is one crossing of the beams. 
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Poisson Distribution 

A Poisson distribution applies in situations where the process has a 
constant rate, and we ask about the number of occurrences in a fixed 
time interval. 

Nuclear physics example: radioactive decays of a large sample of an 
unstable isotope, where the lifetime is very long compared to the 
observation time;  i.e., the decay rate is constant.  The number of decays 
observed in some time period, T, follows a Poisson distribution.  
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Poisson Distribution-cont. 
The Poisson distribution can be derived from the Binomial distribution in 
the limit when N →∞ and p →0, but Np fixed and finite. For accelerator 
example, N is the number of beam crossings observed, and p is the 
probability of an event occurring.  The ‘expected number’ of events is 
ν=Np and the observed number is           .  Then  

€ 

f (r;N , p)→ f (n;ν)

Note that ν will depend on the observation time (number of trials). 

€ 

f (n; ν
N
,N ) =

N!
n!(N − n)!

ν n

N n 1−
ν

N
 

 
 

 

 
 
N −n

For N→∞ 

  

€ 

N!
(N − n)!

= N(N −1)(N − n +1)→ N n

1− ν

N
 

 
 

 

 
 
N −n

→ 1− ν

N
 

 
 

 

 
 
N

→ e−ν
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Poisson Distribution-cont. 

 ν=0.1 ν=0.5 

ν=1.0 ν=2.0 

ν=5.0 ν=10. 

ν=20. ν=50. 

Notes: 
•  As ν increases, the 
distribution becomes more 
symmetric 
•  Approximately Gaussian for 
ν>20 
•  Poisson formula is much 
easier to use that the Binomial 
formula. 

E[n]=ν  by definition         
σ2=ν       variance=mean  
most important property 

So, 

€ 

f (n;ν ) =
ν ne−ν

n!
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Poisson Distribution-cont. 
Proof of Normalization, mean, variance: 

€ 

Normalization : ν ne−ν

n!n=0

∞
∑ = e−ν ν n

n!
=

n=0

∞
∑ e−νeν =1

€ 

E[n]= n
n=0

∞
∑

ν ne−ν

n!
= e−ν ν

n=1

∞
∑

ν n−1

(n −1)!
= νe−νeν = ν

€ 

V[n] = E[n2]− E[n]2

E[n2] = n2
n=0

∞
∑

ν ne−ν

n!
= e−ν ν

n=1

∞
∑ n ν n−1

(n −1)!

= νe−ν (n −1) ν
n−1

(n −1)!n=1

∞
∑ +

ν n−1

(n −1)!n=1

∞
∑

 

 
 

 

 
 = ν

2 + ν

V[n] = ν 2 + ν −ν 2 = ν € 

write n = (n −1+1)
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Poisson Distribution-cont. 
Example: Observation of Supernovae – IMB experiment 

Number of events in 10 sec interval:  0    1      2    3    4   5   6       7       8       9 
Frequency                        1042 860 307 78  15  3   0       0       0       1 
Poisson with mean 0.77                   1064 823 318  82  16 2  0.3 0.03   0.003 0.0003  

Note: a 10 sec interval 
contains a very large 
number of trials each with 
a very small success rate.  
It (the 10 sec interval) is 
not one trial ! 
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Poisson Distribution-cont. 
How much confidence do we have that this observation represents some 
new physics? 

A standard quantity to calculate is Prob(r≥n;ν).  In this example, 

                              Prob(r ≥9;0.77) 

0.77
7

9

0.77 1.3 10
!

n

n

e
n

−∞
−

=

= ⋅∑

Is this the probability for observing this effect ?  
More on this kind of issue later ! 
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Poisson Distribution-cont. 

We often have to deal with a superposition of two Poisson processes – 
the signal distribution and the background distribution, which are 
indistinguishable in the experiment (for example, the signal for large 
extra dimensions may be the observation of events where momentum 
balance is (apparently) strongly violated.  However this can be mimicked 
by neutrinos, energy leakage from the detector, etc.)  Usually we know 
the background expectations and want to know the likelihood of a signal 
in addition. 
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Poisson Distribution-cont. 

i.e., we get another Poisson distribution for the combined expectation. 
€ 

Use the subscripts B for background,  s for signal,  
and assume n events are observed

P(n) = f (ns;ν s ) f (n − ns;νB )
ns =0

n
∑

         = e−(ν B +ν s ) ν s
nsνB

n−ns

ns!(n − ns )!ns =0

n
∑

         = e−(ν B +ν s ) ν s +νB( )n

n!
n!

ns!(n − ns )!ns =0

n
∑

ν s

ν s +νB

 

 
 

 

 
 

ns νB

ν s +νB

 

 
 

 

 
 

n−ns

         = e−(ν B +ν s ) ν s +νB( )n

n!

Binomial formula with  

€ 

p =
ν s

ν s +νB

 

 
 

 

 
 

=1 by normalization 
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to
P (no event) = (1−R∆t)n

= (1−Rt/n)n

= e−Rt for n→∞

Poisson Distribution-alternate derivation 
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We assume a process with a constant rate, R.  What is the probability that 
no event has occurred up to time t ? 

Divide t into many very small intervals Δt, t=nΔt.  Then 



Poisson Distribution-alternate derivation 
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Now what is the probability to get one event in interval T ? 

∫ T

0
e−Rte−R(T−t)(Rdt) = RTe−RT

Or, using ν = RT P (1; ν) = νe−ν

Tt = 0

dt

t



Poisson Distribution-alternate derivation 
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Now what is the probability to get two events in interval T ? 

t1 t2 Tt = 0

dt dt

P (2;R, T ) = e−RT

∫ T

0
Rdt1

∫ T

t1

Rdt2

P (2;R, T ) = R2e−RT

∫ T

0
(T − t1)dt1 =

R2T 2e−RT

2

or P (2; ν) =
ν2e−ν

2
and P (n; ν) =

νne−ν

n!



The Gaussian distribution is the most widely known distribution, and 
the most widely used. 

€ 

P(x;µ,σ ) =
1
2πσ

e
−
(x−µ)2

2σ 2

The mean is µ and the variance is σ2. 

All Gaussians are similar in shape and symmetric, as opposed to the 
Binomial or Poisson distribution, and easily characterized.  E.g., 
68.3% of the probability lies within 1 standard deviation of the mean 
95.45% within 2 standard deviations 
99.7% within 3 standard deviations 
FWHM = 2.35σ 
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€ 

ln n!≈ ln 2πn + n ln n − n

or     n!≈ 2πn n
e

 

 
 

 

 
 
n

We now substitute in the Binomial formula  

We will need Stirling’s approximation 

Binomial N=50, p=0.5 

Gaussian µ=25,σ2=Np(1-p) 

We consider two derivations of the Gauss function.  First, the 
derivation starting from the binomial distribution.  The appropriate 
limit in this case is N→∞ and r →∞ and p not too small and not too 
big.  We have already seen that this leads to a symmetric 
distribution. 
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Gaussian Distribution 



€ 

f (r;N, p) =
N!

r!(N − r)!
pr (1− p)N−r ≈ 2πN (N /e)N

2πr(r /e)r 2π (N − r)((N − r) /e)N−r
pr (1− p)N−r

                                                =
1
2π

N
r(N − r)

NN

rr (N − r)N−r
pr (1− p)N−r

                                                =
1

2πN
NN+1

rr+1/ 2(N − r)N−r+1/ 2 p
r (1− p)N−r

€ 

f (r;N, p) ≈ 1
2πN

r
N
 
 
 

 
 
 
−r−1/ 2 N − r

N
 
 
 

 
 
 
−N+r−1/ 2

pr (1− p)N−r

or 

Doesn’t look much like the Gaussian … 
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Gaussian - derivation 



Change variables r=Np+ξ. ξ measures the distance from the mean of the 
binomial, Np, and the measured quantity, r. The variance of a binomial is 
Np(1-p), so the typical deviation of r from Np is given by 

€ 

σ = Np(1− p)

Terms of the form ξ/r will therefore be of order 1/√N and will be small.  
Furthermore, 

€ 

ln(1+ξ /N ) ≈ ξ /N −1/2(ξ /N )2

First the rewrite in terms of ξ 

€ 

r
N
 
 
 

 
 
 
−r−1/ 2

= p + ξ /N( )−r−1/ 2 = p−r−1/ 2(1+ ξ /N)−r−1/ 2

€ 

N − r
N

 
 
 

 
 
 
−r−1/ 2

= (1− p)−N+r−1/ 2 1−ξ /N(1− p)( )−N+r−1/ 2
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Gaussian - derivation 



€ 

f (r;N, p) ≈ 1
2πN

r
N
 
 
 

 
 
 
−r−1/ 2 N − r

N
 
 
 

 
 
 
−N+r−1/ 2

pr (1− p)N−r

       =
1

2πNp(1− p)
1+

ξ
Np

 

 
 

 

 
 
−r−1/ 2

1− ξ
N(1− p)

 

 
 

 

 
 
−N+r−1/ 2

so 

Rewrite in exponential form and use approximations from last page 

€ 

f (r;N, p) ≈ 1
2πNp(1− p)

exp (−r −1/2)ln 1+
ξ
Np

 

 
 

 

 
 + (−N + r −1/2)ln 1− ξ

N(1− p)
 

 
 

 

 
 

 

 
 

 

 
 

              =
1

2πNp(1− p)
exp (−Np −ξ −1/2) ξ

Np
−

1
2

ξ
Np
 

 
 

 

 
 

2 

 
  

 

 
  

 

 
 
 

 

 
 
 

                                              + (−N(1− p) + ξ −1/2) − ξ
N(1− p)

−
1
2

ξ
N(1− p)
 

 
 

 

 
 

2 

 
  

 

 
  

 

 
 
 

 

 
 
 

              ≈ 1
2πNp(1− p)

exp −Np ξ
Np

−
1
2

ξ
Np
 

 
 

 

 
 

2 

 
  

 

 
  − N(1− p) − ξ

N(1− p)
−

1
2

ξ
N(1− p)
 

 
 

 

 
 

2 

 
  

 

 
  

 

 
 
 

 

 
 
 

              =
1

2πNp(1− p)
exp − ξ 2

2Np(1− p)
 

 
 

 

 
 σ 2 = Np(1− p)
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A different derivation 
Here we follow the argument used by Gauss.  Gauss wanted to solve 
the following problem: What is the form of the function ϕ(xi-µ) which 
gives a maximum probability for µ=arithmetic mean of the observed 
values {xi}. 
  

€ 

f ( x | µ) =ϕ(x1 −µ)ϕ(x2 −µ)ϕ(xn −µ)      is the probability to get {xi}

Gauss wanted this function to peak at 

€ 

µ =

xi
i=1

n

∑
n

€ 

df
dµ µ=x 

= 0 ⇒
d

dµ
ϕ(xi −µ)

i=1

n
∏

µ=x 
= 0

€ 

Assuming f (µ = x ) ≠ 0, ′ ϕ (xi − x )
φ(xi − x )

= 0
i
∑

Define ψ = ′ ϕ 
ϕ

zi = xi − x 

Then zi
i
∑ = 0 ψ(zi )

i
∑ = 0 for all possible zi,  so ψ ∝ z
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Gauss’ derivation-cont. 

€ 

ψ = kz ⇒
dϕ

dz
ϕ

= kz,      or  ϕ(z)∝exp kz2

2
 
 
  

 
 

We get the prefactor via normalization. 

Lessons: 
•  Binomial looks like Gaussian for large enough N,r,p 
•  Poisson also looks like Gaussian for large enough n 
•  Gauss’ formula follows from general arguments (maximizing posterior 
probability) 
•  Gauss’ formula is much easier to use than Binomial or Poisson, so use 
it when you’re allowed. 

October 19-21 , 2009 40 IMPRS Block Course 



Comparison Gaussian-Poisson 

Binomial:  
N      p         <r>            <(r-µ)2>          <(r- µ)3> 
10    0.4         4                 2.4                   0.48 

Poisson:  
ν         <r>            <(r-µ)2>          <(r- µ)3> 
4  4                    4                     4 

Gaussian:  
    µ                  σ2                 <(r- µ)3> 
    4                  2.4                       0 

•  In this case, the Binomial 
more closely resembles a 
Gaussian than does the 
Poisson 

•  Note, for Binomial, can 
change N,p 

Four events expected 
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Binomial:  
N      p         <r>            <(r-µ)2>          <(r- µ)3> 
2    0.9          1.8                0.18                 -0.14 

Poisson:  
ν         <r>            <(r-µ)2>          <(r- µ)3> 
1.8        1.8                1.8                   1.8 

Gaussian:  
    µ                  σ2                 <(r- µ)3> 
    1.8                0.18                    0 

Smaller number expected 

In general, need to use 
Poisson or Binomial 
when dealing with small 
statistics or p≅0,1 

October 19-21 , 2009 42 IMPRS Block Course 



Binomial:  
N      p         <r>            <(r-µ)2>          <(r- µ)3> 
100    0.1      10                 9                   7.2 

Poisson:  
ν         <r>            <(r-µ)2>          <(r- µ)3> 
10  10                10                    10 

Gaussian:  
    µ                  σ2                 <(r- µ)3> 
    10                 9                       0 

For large numbers, 
Gaussian excellent 
approximation. 
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Larger number expected 



Some Applications 

When we don’t know better, we use a Gaussian for unknown probability 
distributions.  E.g., the degree-of-belief distribution of parameters in our 
systematic uncertainties.  This can sometimes be justified with the 
Central Limit Theorem. 

When reporting uncertainties on a measurement, we quote ±1σ values.  
These are understood as Gaussian standard deviations, and therefore 
refer to a probability that our measurement is within the uncertainty from 
the true value (68.3% central probability interval).   
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Over-applications 

Bachelier claimed that the change in market prices followed a Gaussian distribution. This 
distribution describes many natural features, like height, weight and intelligence among people. 
The Gaussian distribution is one of the foundations of modern statistics. If economic features 
followed a Gaussian distribution, a range of mathematical techniques could be applied in 
economics.  

Unfortunately, as Mandelbrot points out in The (Mis)behavior of Markets, the foundation of this 
new era of economics was rotten. …There are far more market bubbles and market crashes than 
these models suggest. 

The change in market prices does not follow a Gaussian distribution in a reliable fashion. Like 
income distribution, market statistics frequently follow a power law. When a graph is made of 
market returns (e.g., profit and loss), the curve will not fall toward zero as sharply as a Gaussian 
curve. The distribution of market returns has "fat tails". The "fat tails" of the return curve reflect 
risk, where large losses and profits can be realized.  

From a book review of The (Mis)behavior of Markets: A Fractal View of Risk, Ruin, and Reward 
Benoit Mandelbrot and Richard L. Hudson. Review by Ian Kaplan: 

October 19-21 , 2009 45 IMPRS Block Course 



Characteristic Function 

Consider the characteristic function of a Gaussian 
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€ 

ϕ(k) = dx eikx 1
2πσ

e−
(x−µ )2

2σ 2

 

 
 
 

 

 
 
 

−∞

∞

∫

=
1

2πσ
dx

−∞

∞

∫ exp −
1
2
x
σ
−

µ
σ

+ ikσ
 

 
 

 

 
 

 

 
 

 

 
 

2 

 
  

 

 
  exp ikµ −

k2σ 2

2
 

 
 

 

 
 

= eikµ e
−
k 2σ 2

2
   

  where we have used e−z
2 / a2

dz = a π
−∞

∞

∫
so

ϕ(k) = eikµ e
−
k 2σ 2

2
   



Adding two Gaussians 

€ 

suppose z = x+ y

ϕz(k) = eikx p(x) dx eikyq(y) dy∫∫
or
ϕz(k) = ϕx(k)ϕy(k)

The characteristic function of a sum of r.v.s is 
the product of the individual char. fns. 

Consider the characteristic function for the sum of two Gaussians: 
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characteristic function  

φz(k) = eikµx−k2σ2
x/2eikµy−k2σ2

y/2

φz(k) = eik(µx+µy)−k2(σ2
x+σ2

y)/2

f(z) =
1√

2πσz

e
− (z−µz)2

2σ2
z µz = µx + µy σ2

z = σ2
x + σ2

y

so 

And the pdf for z is 
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Adding two Gaussians 
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Notation-cont. 
For two random variables x,y, define joint p.d.f., f(x,y).  The probability 
that x is in the range x→x+dx and simultaneously y is in the range y→y
+dy is f(x,y)dxdy.  To evaluate expectation values, etc., usually need 
marginal p.d.f.   The marginal p.d.f. of x (y unobserved) is 

€ 

f1(x) = f (x,y)dy
−∞

∞

∫

€ 

µx = xf (x,y)dxdy = xf1(x)dx
−∞

∞

∫∫∫The mean of x is then 

€ 

cov[x,y] =  E[(x - µx )(y −µy )] = E[xy]−µxµy

The covariance of x and y is defined as 

€ 

ρxy = cov[x,y]/σ xσ y

And the correlation coefficient is 
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x 

y ρxy=-0.8 

x 

y ρxy=0.2 

x 

y 
ρxy=0 

The shading represents an equal probability 
density contour 

Examples 

The correlation coefficient is limited to           -1≤ ρxy ≤1  
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Two variables are independent if and only if  

                     f(x,y)=f1(x)f2(y) 

Then 

0)()(

)()(

),(

][],cov[

21

21

=−=

−=

−=

−=

∫∫

∫ ∫

∫ ∫

yx

yx

yx

yx

dyyfydxxfx

dxdyyfxfxy

dxdyyxfxy

xyEyx

µµ

µµ

µµ

µµ

Independent Variables 
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Notation-cont. 

If x,y are independent, then 

                      E[u(x)v(y)]=E[u(x)]E[v(y)] 

and 

                      V[x+y]=V[x]+V[y] 

If x,y are not independent 

                      V[x+y]=E[(x+y)2]-(E[x+y])2 

                                  =E[x2]+E[y2]+2E[xy] – (E[x]+E[y])2 

                                  =V[x]+V[y]+2(E[xy]-E[x]E[y]) 

                                  =V[x]+V[y]+2cov[x,y] 
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Adding two Correlated Gaussians 
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If z=x+y and x,y are Gaussian distributed but correlated, then we again 
get a Gaussian for z with 

µz = µx + µy σz =
√

σ2
x + σ2

y + 2ρσxσy

For z=x-y, we get 

µz = µx − µy σz =
√

σ2
x + σ2

y − 2ρσxσy



Notation-cont. 

The notation can be easily extended to any number of variables.  Rather 
than using x,y,z, ?, we switch to a vector notation 

The covariance between any pair of variables can be calculated.  
The covariance matrix is defined by Vij= cov(xi,xj).  It is also 
called the error matrix.  The usual variances are on the diagonal.  
Similarly, a correlation matrix can be defined. 

  

€ 

 
x = (x1,x2,,xn )
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Central Limit Theorem 

  

€ 

Suppose we make n measurements of x.The average of the measurements is

a =
1
n

x1 + x2 ++ xn( )

What is the distribution of a ? It's simpler to consider the distribution of
 a − µ , Q(a − µ ), where µ =< x >

Φ(k) = eik (a−µ ) Q(a − µ ) da∫

The characteristic function of a sum of r.v.s is the product of the 
individual char. fns. 

We use this to prove the CLT: 
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Central Limit Theorem-cont. 

  

€ 

Φ(k) = e
ik
n

(x1−µ )++(xn−µ )[ ]
p(x1)dx1 p(xn )dxn∫

        = e
ik
n

(x1−µ )
p(x1)dx1∫

 

 
  

 

 
   e

ik
n

(xn−µ )
p(xn )dxn∫

 

 
  

 

 
  

        = ϕ
k
n
 
 
 
 
 
 

 

  
 

  

n

  where ϕ(k) is the characteristic function of x −µ

  

€ 

ϕ(k) = eik (x−µ )p(x) dx∫

       = 1+ ik x− µ −
k2

2
(x− µ )2 + = 1− k2σ 2

2
+

so

Φ(k) = ϕ(k /n)[ ]n = 1− 1
2
k2σ 2

n2 +
 

 
 

 

 
 

n

→
n→∞

e
−
k 2σ 2

2n
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Central Limit Theorem-cont. 

€ 

To get the pdf, we use an inverse Fourier transform

Q(a −µ) =
1

2π
dk e−ik(a−µ ) e

−
k 2σ 2

2n∫ =
1
2π

n
σ

1
2πξ

dk e−ik(a−µ ) e
−
k 2

2ξ 2

∫
 

 

 
 

 

 

 
 

Q(a −µ) = P(a) =
n

2πσ
e
−
n
2

(a−µ )2

σ 2

The distribution of the average of a large number of measurements 
of a random variable x (given here by a) follows a Gaussian 
distribution.  The width of the Gaussian is given by 

€ 

ξ =
σ

n
  where σ is the standard deviation of x

The shape of the 
initial distribution is 
unimportant ! 
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Central Limit Theorem-Example 

10 experiments where we 
sample 10 times randomly 
from a flat distribution.  The 
data are shown as the black 
bars.  The red bar gives the 
mean for the 10 samples. 
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Central Limit Theorem-Example 

The mean value from 
1000 experiments each 
with 10 samplings of the 
distribution.  The red 
curve is a Gaussian 
with: 

µ=0.5 and 

10
1

12
1

=σ

Do you understand how 
the factors arise ? 
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Central Limit Theorem - conclusion 

When results are presented, the uncertainties are often quoted assuming 
Gaussian distributions: 
•  For event counting, we have seen that the Binomial and Poisson reduce 
to the Gaussian distribution for large numbers of events  
(≥ 25 or so).  The statistical error (1 Gaussian standard deviation) is then 
taken to be σ=√N (from Poisson distribution). 

•  For other types of uncertainties (so-called systematic uncertainties or 
systematic errors), again a Gaussian distribution is often assumed to 
describe the distribution of the measured relative to the ‘true’.  This is 
usually justified with the CLT, although it is a rather indirect use.  
Examples of systematic uncertainties: energy calibration, alignment, time 
dependence, …  If one dominates, then CLT not applicable. 
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Extras 
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Characteristic Function 
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Characteristic Function 

€ 

Suppose x is a random variable with pdf px(x) and
              y is an independent random variable  with pdf   py(y)
and z = f (x,y).  We are interested in the probability that
z lies in the interval z→ z + dz.  Call this pz (z)dz

the characteristic function of z is

ϕz (k) = eikz pz (z)dz =∫ eikf (x,y ) px (x) dx py (y) dy∫∫

Once we have the characteristic function, we can get the pdf for z
with an inverse Fourier Transform

pz (z) =
1

2π
e−ikz∫ ϕz (k) dk
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