
October 19-21 , 2009 

IMPRS Block Course on Probability and Data 
Analysis 

 Morning – lecture on learning from data, Bayes 
Theorem, parameter estimation, calculating probability 
intervals and limits 

 Afternoon – analyzing charged current deep inelastic 
scattering data on your computer to find limits on the 
cross section for a putative right-handed W boson coupling 
to electrons and neutrinos. 
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How we learn 

October 19-21 , 2009 2 IMPRS Block Course 
Figure 1: Paradigm for data analysis. Knowledge is gained from a comparison of model
predictions with data. Intermediate steps may be necessary, e.g., to model experimental
conditions.

the experiment many times under identical conditions. This is possible be-
cause the model is a mathematical construction which allows the calculation
(or simulation) of frequencies of outcomes. The predictions from the model
cannot usually be directly compared to experimental results. An additional
step is needed, either to modify the predictions to allow for the experimental
effects, or to undo the experimental effects from the data. Obviously, an ac-
curate description of the experimental effects is necessary to produce reliable
conclusions.

The function g(!y|!λ, M) gives the relative frequency of getting result !y
assuming the model M and parameters !λ. It should satisfy:

g(!y|!λ, M) ≥ 0 (1)

and
∑

i

g(yi|!λ, M) = 1 or

∫

g(!y|!λ, M) d!y = 1 (2)

depending on whether discrete or continuous values are measured. In the
following, we will write formulae for the continuous case; the modification
for the discrete case will be clear. Note that the normalization requirement
is often discarded when only relative probabilities of outcomes are needed.
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How we Learn 
We learn by comparing measured data with distributions for predicted 
results assuming a theory, parameters, and a modeling of the 
experimental process. 

What we typically want to know: 
•  Is the theory reasonable ?  I.e., is the observed data a likely result from 
this theory (+ experiment) 

•  If we have more than one potential explanation, then we want to be 
able to quantify which theory is more likely to be correct given the 
observations 

•  Assuming we have a reasonable theory, we want to estimate the most 
probable values of the parameters, and their uncertainties.  This includes 
setting limits (>< some value at XX% probability).  



Radioactive Decay 
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As an example, we will consider measuring the decay rate for a 
radioactive isotope, in the presence of background.  We assume the 
lifetime is long compared to the time needed for the measurement. 

We take two measurements, one with the source absent, to measure the 
background rate, and once with the source present. 

Data Set Source in/out Run Time Events 
1 Out 100 100 
2 In 100 110 

What can we say about the decay rate for our isotope ? 

N = N0e
−t/τ dN

dt
= −N

τ



Formulation 
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The expected distribution (density) of the data assuming a model M and 
parameters    is written as                       where     is a possible realization 
of the data.  There are different possible definitions of this function. 

We require that  

although as we will see the normalization condition is not really needed.  

f(!x|!λ, M)

f(!x|!λ, M) ≥ 0
∫

f(!x|!λ, M)d!x = 1

!λ !x



Formulation 
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The modeling of the experiment will typically add other (nuisance) 
parameters.  E.g., there are often uncertainties, such as, e.g., the energy 
scale of the experiment.  Different assumptions on these lead to different 
predictions for the data.  Can have 

where      represents our nuisance parameters. 

Example: for our decay example, we could choose: 

f(!x|!λ,!ν, M)

!ν

M → R = RS + RB Total rate is sum of the signal rate + background rate 

!λ→ RS(≈ N0/τ)

!ν → RB

The observed number of events in a time window is assumed to 
follow a Poisson distribution with expectation RT (T is time of 
observation). RS and RB are assumed to be constant. 



Formulation 
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For the model, we have                          .  For a fully Bayesian analysis, 
we require   

For the parameters, assuming a model, we have: 

∑
i P (Mi) = 1

0≤ P (M) ≤ 1

The joint probability distribution is P (!λ, M) = P (!λ|M)P (M)

and 
∑

i

P (Mi)
∫

P (!λ|Mi)d!λ = 1

P (!λ|Mi) ≥ 0∫
P (!λ|Mi)d!λ = 1
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where the index represents a ‘state-of-knowledge’ 

We have to satisfy our normalization condition, so 

We usually write                .  This is our ‘prior’ information before 
performing the measurement (e.g.,                in our radioactive decay 
example.)  

Pi+1(!λ, M | !D) =
f(!x = !D|!λ, M)Pi(!λ, M)

∑
M

∫
f(!x = !D|!λ, M)Pi(!λ, M)d!λ

Learning Rule 

RS ≥ 0



Learning Rule 
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The denominator is the probability to get the data summing over all 
possible models and all possible values of the parameters.  

Bayes Equation 

P (!λ, M | !D) =
f(!x = !D|!λ, M)P0(!λ, M)

∑
M

∫
f(!x = !D|!λ, M)P0(!λ, M)d!λ

P ( !D) =
∑

M

∫
f(!x = !D|!λ, M)P0(!λ, M)d!λ

If the function                            is the probability to get the data with this 
model and parameter set, then we get 

f(!x = !D|!λ, M)



Bayes-Laplace Equation 
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Here is the standard derivation: 

S A 

B 

BA

P (A, B) = P (A|B)P (B)
P (A, B) = P (B|A)P (A)

So

P (B|A) =
P (A|B)P (B)

P (A)

Clear for logic propositions and well-defined S,A,B.   

In our case, B=model+parameters, A=data 



Radioactive Decay 
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Let’s try it out on our example: 
1.  First try to get an estimate of the background rate from the first data 

set.  Assume we don’t know very much.  How do we represent this 
initial lack of knowledge ? Pick a simple form: 

P0(RB) = constant

In this type of experiment, the number of counts in a time window 
follows a Poisson Distribution: 

P (N1|RB) =
e−nBNnB

1

N1!
nB = RB · T

P (RB |N1) ∝ P (N1|RB)



Radioactive Decay 
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Peak is at 1, as expected, 
and the Gaussian width is 
about 0.1.  I.e., we know 
the background rate with 
about 10% certainty (100 
events measured)  

Data Set Source in/out Run Time Events 
1 Out 100 100 



Radioactive Decay 
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2.  Now try to get an estimate of the signal (and better estimate of the 
background).  We can either analyze both data sets simultaneously or 
take what we learned from the first data set as prior and just analyze 
the second (same results).  Choose 

Analyze both data sets simultaneously 

P (N1, N2|RB , RS) =
e−nBNnB

1

N1!
e−nNn

2

N2!
nB = RB · T

n = (RB + RS)T

P (RB , RS |N1, N2) ∝ P (N1, N2|RB , RS)

P0(RB , RS) = P0(RB)P0(RS) = constant, RS > 0, RB > 0



Radioactive Decay 
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Parameter Estimation 

October 19-21 , 2009 IMPRS Block Course 15 

The posterior pdf gives the full probability distribution for all 
parameters, including all correlations – no approximations.  If interested 
in subset of parameters, then marginalize.  E.g., for one parameter: 

P (λi| "D,M) =
∫

P ("λ| "D,M)d"λ !=i

Can calculate what you need from the posterior pdf. E.g., 

Mean of λi < λi >=
∫

P (λi| "D,M)λidλi

Mode
λimax {P (λi|D,M)}

Median
∫ λmed

λmin
P (λi| "D,M)dλi = 0.5

Can also perform uncertainty propagation w/o approximations 

+ probability intervals, … 
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Radioactive Decay 
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Setting Limits 
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Setting limits is easy – just integrate the posterior pdf.  E.g., 90% upper 
limit: 

0.9 =
∫ λupper

λmin

P (λi| "D,M)dλi

Or calculate contours in higher dimensional spaces 
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Binomial Distribution 

We look now examples where our model uses Binomial distributions. 

Suppose we perform N trials and have r successes.  What is the ‘true’ 
probability of a success, p ? We implicitly assume that this 
probability is constant, and therefore the frequency distribution is a 
binomial.  We want to know the parameter p of the binomial 
distribution.  From Bayes’ Theorem: 

€ 

f (p | r,N) =
f (r | p,N) f (p)

f (r | p,N) f (p)dp
0

1
∫

=

N!
(N − r)!r!

pr (1− p)N−r f (p)

N!
(N − r)!r!

pr (1− p)N−r f (p)dp
0

1
∫
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Binomial – cont. 

If we assume that f(p) is a constant 

€ 

f (p | r,N) =
f (r | p,N) f (p)

f (r | p,N) f (p)dp
0

1
∫

=

N!
(N − r)!r!

pr (1− p)N−r

N!
(N − r)!r!

pr (1− p)N−r dp
0

1
∫

The integral is technically a β function, and for integer r,N reduces to 

€ 

f (p | r,N) =
(N +1)!
r!(N − r)!

pr (1− p)N−r
€ 

px (1− p)n−x dp
0

1
∫ =

x!(n − x)!
(n +1)!

Note maximum at p=r/N 
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so 



Binomial - cont. 

The expectation value and variance are: 

€ 

< p >=
(N +1)!
r!(N − r)!0

1
∫ pr+1(1− p)N−r dp =

(N +1)!
r!(N − r)!

(r +1)!(N − r)!
(N + 2)!

=
r +1
N + 2

€ 

σ 2 =
(r +1)(N − r +1)
(N + 3)(N + 2)2

=< p > (1− < p >) 1
N + 3
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Binomial - cont. 
Comments: 
•  The expectation value is not r/N, the ‘observed’ value of p, but rather 

r+1/N+2.  As N→∞, this yields the expected answer.  Note however 
that f(p|N,r) does peak at r/N.  This should be kept in mind.  The 
form r+1/N+2 gives reasonable values for r=0 and r=N (even for 
N=0) 

•  The variance also assumes the ‘expected’ form as N →∞. 

•  The formula can be used to learn, I.e, f(p) can be recalculated based 
on existing measurements rather than evaluating everything in one 
step.  The same results are obtained.  E.g., 
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Binomial – cont. 

Consider two special cases: r=0, r=N 

€ 

r = N : f (N |N, p) =
N
N
 

 
 
 

 
 pN (1− p)N−N = pN

f (p | r = N,N) =
pN

pNdp
0

1
∫

= (N +1)pN     

where we assumed f(p) = constant

€ 

 F(p | r = N,N) = (N +1) ′ p N d ′ p 
0

p
∫ = pN +1

For setting limits on parameters, we need the cumulative distribution 
function 
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Binomial - cont. 

€ 

For a 95% lower limit :     F(p0 | r = N,N) = 0.05,  so  p0 = 0.05N+1

95% probability that 
p>p0 

N=1,   p0=0.22 

N=4,   p0=0.55 

N=10, p0=0.76 
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Binomial – cont. 

€ 

r = 0 : f (0 | N, p) =
N
0
 

 
 
 

 
 p0(1− p)N−0 = (1− p)N

f (p | r = 0,N) =
(1− p)N

(1− p)N dp
0

1
∫

= (N +1)(1− p)N     where we assumed f(p) = constant

and        F(p | r = 0,N) = (N +1)(1− ′ p )N d ′ p 
0

p
∫ =1− (1− p)N +1

€ 

For a 95% upper limit :     F(p0 | r = 0,N) = 0.95,  so  p0 =1− 0.05N+1

95% probability that 
p<p0 
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Data Analysis-Poisson Distribution 
Typical examples – counting experiments such as source activity, failure 
rates, cross sections,…  A very common application is the discovery 
process: a certain number of events were observed, and you want to 
know the probability that you have a discovery. 

€ 

f (ν | x) =
f (x |ν) f (ν)

f (x |ν) f (ν)dν
0

∞
∫

=

ν xe−ν

x!
f (ν)

ν xe−ν

x!
f (ν)dν

0

∞
∫

    

This is our master formula.  Result will depend on choice of prior, f(ν). 
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Poisson - cont. 

€ 

f (ν | x) =

ν xe−ν

x!
f (ν)

ν xe−ν

x!
f (ν)dν

0

∞
∫

 =

ν xe−ν

x!
ν xe−ν

x!
dν

0

∞
∫

   

ν xe−ν

x!
dν

0

∞
∫ =

1
x!

ν xe−ν dν
0

∞
∫ =1

so

f (ν | x) =
ν xe−ν

x!
  

If we assume a flat prior,  

Note: peak at ν=x 
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Poisson - cont. 

€ 

< ν >=
ν xe−ν

x!
ν dν

0

∞
∫ =

(x +1)!
x!

= (x +1)

σ 2 =
ν xe−ν

x!
ν 2 dν

0

∞
∫ − < ν >2=

(x + 2)!
x!

− (x +1)2 = (x +1)









′′+′−=′

′
= ∫∫ ′−−′−

′− ν
ννν

ν ν

νννν
ν

ν
0

1
0

0

|
!
1

!
)|( dexe

x
d

x
exF xx
x

€ 

 F(ν | x) =1− e−ν ν n

n!n=0

x
∑

The cumulative distribution function: 

The expectation value and standard deviation: 

!! 

!! 
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Poisson - cont. 

Note: x=0    <ν>=1   ??? 

From prior, expect 

€ 

< ν >= νf (ν )dν
0

∞
∫ = lim

′ ν →∞

1
′ ν 
νdν = lim

′ ν →∞

′ ν 
20

′ ν 
∫ =∞

What happened ? 

x=0 is a measurement ! 
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Poisson – cont. 

Comments: 

•  As with the binomial, the expectation value is ≠ measured value, but 
the peak of the probability distribution (maximum likelihood) gives the 
‘correct’ value 

•  The variance is also larger than the naïve expectation.   

Some example f(ν) 
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Poisson – cont. 
Some examples.  First, no background, measure zero counts. 

€ 

f (ν | x = 0) =
ν 0e−ν

0!
= e−ν    with the flat prior assumption

F(ν | x = 0) = 1− e−ν   
For a 95%  upper limit, set F(ν | 0) = 0.95 =1 - e-ν

which gives ν < 3  (very common result)

Note that there is nothing 
magic about the number 3 
- it is a coincidence of 
choosing the 95% 
probability cutoff 
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Poisson – cont. 

What if we cannot take a flat prior ?  (e.g., we have previous 
information, such as non-observation in previous experiments or 
theoretical bias) 

€ 

Suppose we can model the prior belief as f (ν) =
1

10
e−ν 10

Now Bayes tells us f (ν | x = 0) =
f (0 |ν) f (ν)

f (0 |ν) f (ν)dν
0

∞
∫

=
e−ν 1

10
e−ν 10

1
10
e−11ν 10dν

0

∞
∫

=
11
10
e−11ν 10

< ν >=
11
10
e−11ν 10νdν

0

∞
∫ = 0.91

P(ν ≤ 2.7) = 95%, i.e.,  ν ≤ 2.7  with 95% probability

Peaked prior gives smaller upper limit.  Lesson: choice of prior 
important 
October 19-21 , 2009 31 IMPRS Block Course 



Poisson – cont. 
And now suppose we have background: 

€ 

µ = λ + ν, p(x | µ) =
e−µµx

x!

f (ν | x,λ) =

e−(λ+ν )(λ + ν)x
x!

 
 
 

 
 
 f (ν)

e−(λ+ν )(λ + ν)x
x!

 
 
 

 
 
 f (ν )dν

0

∞
∫

    

Imagine that we observe a certain number of events, x, but there are two 
different possible sources - the signal we are looking for, and background 
events which mimic the signal but are uninteresting.   
Notation:  λ    is the expected number of background events 

  σB is the uncertainty on the background (typically assumed 
to be Gaussian distributed).  We will consider first the case where σB<< 
λ and can be neglected. 
As discussed previously, the expected number of events again follows 
a Poisson distribution. 
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Poisson – cont. 
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∑
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Comments: 
•  The previous formula for no background is recovered when λ=0 
•  For x=0, f(ν|x, λ)=e-ν .  It does not matter how much background 

you have, you get the same probability distribution for the signal.  
Source of much confusion & discussion. 

If we again assume a flat f(ν) and integrate by parts. 
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Poisson – cont. 

€ 

f (λ,ν ) = f (ν)g(λ)
Following Bayes'

f (ν,λ | x) =
f (x | λ,ν ) f (λ,ν)

f (x | λ,ν) f (λ,ν)dνdλ∫∫
=

f (x | λ,ν) f (ν)g(λ)
f (x | λ,ν) f (ν)g(λ)dνdλ∫∫

And we marginalize wrt ν

f (ν | x) =
f (x | λ,ν) f (ν)g(λ)dλ∫
f (x | λ,ν) f (ν)g(λ)dλdν∫∫

  

Applying Poisson statistics

f (ν | x,λ) =

e−(λ+ν )(λ + ν)x
x!

 
 
 

 
 
 f (ν )g(λ)dλ∫

e−(λ+ν )(λ + ν)x
x!

 
 
 

 
 
 f (ν)g(λ)dλdν∫∫

    

Now assume we have a non-negligible uncertainty on the background.  
We can no longer ignore the prior probability for the background.  Call 
this g(λ).  We assume that the background is uncorrelated with the signal 
(independent prior probabilities).  Then 

Typically has to be 
solved numerically 
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Gaussian Uncertainties 
We focus now on data with Gaussian probability distributions.  I.e., we 
expect our results to follow a Gaussian distribution around the ‘true’ 
value. 

The Gaussian assumption is usually valid for samples with large 
statistics.  We also use it to parameterize the systematic uncertainties 
using the CLT as a vague justification. 

We often do not know the true form of the distribution (measured-true), 
and the assumption of a Gaussian form is a default. 
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Bayes and Gaussian Measurements 

Now we make the usual starting assumption about the prior probability – 
it is a constant. 

The pdf for the mean given a single measurement, and assuming 
the width is known, is 

€ 

p(µ | x) =

1
2πσ

exp − (x− µ )2

2σ 2

 

 
 

 

 
 p(µ )

1
2πσ

exp − (x− µ )2

2σ 2

 

 
 

 

 
 p(µ )dµ∫

   
Where x is the measured 
value 

€ 

1
2πσ

exp − (x− µ )2

2σ 2

 

 
 

 

 
 dµ = 1  since the integral is symmetric in x,µ∫

so 

€ 

p(µ | x) =
1
2πσ

exp − (x− µ )2

2σ 2

 

 
 

 

 
 .
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Bayes & Gaussians – cont. 

The probability distribution for µ is a Gaussian distribution about x 

•  The mode is at µ= x  

•  The standard deviation is σµ= σ (the width of the uncertainty assigned 
to measurement) 

•  The probability intervals for µ are 

Probability Level                                Interval 

           68.3%                                         x±σ 

                90.0%                                         x±1.65σ 

           95.0%                                         x±1.96σ 

           99.0%                                         x±2.58σ 

           99.7%                                         x±3σ 
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Bayes & Gaussians – cont. 
Suppose now we make another measurement of the same quantity, and 
have a new estimate for the mean (switch to subscripts).  Assume again 
that the resolution is known, although it could be different than before. 

  

€ 

p2(µ |  x 2) =

1
2πσ 2

exp − (x2 −µ)2

2σ 2
2

 

 
 

 

 
 p1(µ)

1
2πσ 2

exp − (x2 −µ)2

2σ 2
2

 

 
 

 

 
 p1(µ)dµ∫

   

We use the result from the first 
set of measurements for the 
prior. 

€ 

p1(µ) =
1
2πσ1

exp − (x1 −µ)2

2σ1
2

 

 
 

 

 
 .

The denominator is 

€ 

  1
2πσ 2

exp − (x2 −µ)2

2σ 2
2

 

 
 

 

 
 

1
2πσ1

exp − (x1 −µ)2

2σ1
2

 

 
 

 

 
 dµ∫ =

              1
2πσ 2σ1

exp − (x2 −µ)2

2σ 2
2 −

(x1 −µ)2

2σ1
2

 

 
 

 

 
 dµ∫
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Bayes & Gaussians - cont. 

€ 

  1
2πσ 2

exp − (x2 −µ)2

2σ 2
2

 

 
 

 

 
 

1
2πσ1

exp − (x1 −µ)2

2σ1
2

 

 
 

 

 
 =  

               1
2πσ 2σ1

exp − (x2 −µ)2

2σ 2
2 −

(x1 −µ)2

2σ1
2

 

 
 

 

 
 

and the numerator is 

€ 

 1
2πσ 2σ1

exp − (x2 −µ)2

2σ 2
2 −

(x1 −µ)2

2σ1
2

 

 
 

 

 
 =  

1
2πσ 2σ1

exp − x2
2

2σ 2
2 −

x1
2

2σ1
2 + µ

x2

σ 2
2 +

x1

σ1
2

 

 
 

 

 
 −µ2 1

2σ 2
2 +

1
2σ1

2

 

 
 

 

 
 

 

 
 

 

 
 

First rewrite the numerator 
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Bayes & Gaussian – cont. 

define 

€ 

xA =

x1

σ1
2 +

x2

σ 2
2

1
σ1

2 +
1
σ 2

2

     and    1
σA

2 =
1
σ1

2 +
1
σ 2

2

€ 

 1
2πσ 2σ1

exp − x2
2

2σ 2
2 −

x1
2

2σ1
2 + µ

xA
σA

2 −
µ2

2σA
2

 

 
 

 

 
 

Then the numerator becomes 

For the denominator, we integrate this over all µ 

€ 

 1
2πσ 2σ1

exp − x2
2

2σ 2
2 −

x1
2

2σ1
2 + µ

xA
σA

2 −
µ2

2σA
2

 

 
 

 

 
 dµ

-∞

+∞
∫ =

1
2πσ 2σ1

exp − x2
2

2σ 2
2 −

x1
2

2σ1
2

 

 
 

 

 
 exp µ

xA
σA

2 −
µ2

2σA
2

 

 
 

 

 
 dµ

-∞

+∞
∫
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Bayes & Gaussian – cont. 

For the remaining integral, we ‘complete the square’ 

 
2

   and   
2

    so       2       
2

1

)(
2

                                

2

2
2

22
2

2
2

2

2

A

A

A

A

A

A

A

AA

A

xBCxBxABA

CBAx

σσσσ

µ
σ
µ

σ
µ

−=−=−=−==

++=+−

€ 

 exp µ
xA
σA

2 −
µ2

2σA
2

 

 
 

 

 
 dµ =

-∞

+∞
∫ exp −C[ ] exp − Aµ + B( )2[ ] dµ =

-∞

+∞
∫

π
A

exp −C[ ]

exp µ
xA
σA

2 −
µ2

2σA
2

 

 
 

 

 
 dµ =

-∞

+∞
∫ 2πσA exp xA

2

2σA
2

 

 
 

 

 
 
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Gaussian – cont. 

Putting it all together 
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P (µ|x1, x2) =
1√

2πσA

e
− (xA−µ)2

2σ2
A

xA =
x1/σ2

1 + x2/σ2
2

1/σ2
1 + 1/σ2

2

1
σ2

A

=
1
σ2

1

+
1
σ2

2

xA =
∑

i xi/σ2
i∑

i 1/σ2
i

Or in general 

1
σ2

A

=
∑

i

1
σ2

i

Very simple summation rule 
for results with Gaussian 
uncertainties. 



Two Gaussian Measurements 
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Example 
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Detector responses are usually modeled as Gaussians.  E.g., the 
distribution of the measured energy is 

p(E|E0) =
1√
2πσ

e−
(E−E0)2

2σ2

where σ =
√

a2 · E0 + b2 · E2
0

This formula comes from assuming that there are two sources of 
fluctuations possible and they both can be assumed to be Gaussian 
distributed.  The first term is from counting, i.e., Poisson but with high 
statistics.  The second is a systematic calibration uncertainty of different 
cells in the calorimeter.  a,b are parameters describing the performance. 



Example 
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Suppose we now make a measurement of the energy.  What can we say 
about the ‘true’ value ?  If we assume a flat prior, we get 

The probability distribution of the true value is a Gaussian centered on 
the measured value.  However, energy distributions often have a steep 
distribution.  Suppose the starting distribution was 

P (E0|E) = P (E|E0) =
1√
2πσ

e−
(E0−E)2

2σ2

P0(E0) ∝ E−6
0

then 

P (E0|E) ∝ 1√
2πσ

e−
(E0−E)2

2σ2 E−6
0
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Ignoring prior 
With prior 

one measurement of the energy, resolution 10 GeV, measured 100 GeV 



Power for Energy Spectrum 
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Suppose what we are trying to extract is the power of the underlying 
energy distribution.  How would we proceed ? 

Figure 1: Paradigm for data analysis. Knowledge is gained from a comparison of model
predictions with data. Intermediate steps may be necessary, e.g., to model experimental
conditions.

the experiment many times under identical conditions. This is possible be-
cause the model is a mathematical construction which allows the calculation
(or simulation) of frequencies of outcomes. The predictions from the model
cannot usually be directly compared to experimental results. An additional
step is needed, either to modify the predictions to allow for the experimental
effects, or to undo the experimental effects from the data. Obviously, an ac-
curate description of the experimental effects is necessary to produce reliable
conclusions.

The function g(!y|!λ, M) gives the relative frequency of getting result !y
assuming the model M and parameters !λ. It should satisfy:

g(!y|!λ, M) ≥ 0 (1)

and
∑

i

g(yi|!λ, M) = 1 or

∫

g(!y|!λ, M) d!y = 1 (2)

depending on whether discrete or continuous values are measured. In the
following, we will write formulae for the continuous case; the modification
for the discrete case will be clear. Note that the normalization requirement
is often discarded when only relative probabilities of outcomes are needed.

2

In this case, assume  g(E0|λ, M) ∝ E−λ
0



Power example 
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We assume the measured values are related to the true: 

P (E|E0) =
1√
2πσ

e−
(E0−E)2

2σ2

Now apply the ‘law of total probability’ 

P (E|λ) =
∫

P (E|E0)P (E0|λ)dE0

And Bayes’ equation yields P (λ|E) ∝
∏

i

P (Ei|λ)P0(λ)

P (λ|E) ∝
[
∏

i

∫
1√

2πσi

e
− (Ei−E0,i)

2

2σ2
i E−λ

0,i dE0,i

]
P0(λ)



Power example 
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Need numerical approach.   
1.  Either integrate numerically many many time during parameter scan 

2.  Make a histogram of expected number of entries in measured energy 
bins from your event simulation, then reweight the distribution for 
different values of       and see how the agreement between expected 
and measured varies (Poisson statistics). Note that this does not use 
the equation above – in this case 

λ

P (λ|E) ∝
[
∏

i

∫
1√

2πσi

e
− (Ei−E0,i)

2

2σ2
i E−λ

0,i dE0,i

]
P0(λ)

P (E|λ) =
Nbins∏

i=1

e−νiνni
i

ni!

ni

νi = νi(λ)

Number of events 
in energy bin i 
Expectation based 
on λ 



Power example 
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HERA Vertex Example 

October 19-21 , 2009 IMPRS Block Course 51 

Here is a real-life example: the event vertex distribution for events 
recorded in the ZEUS detector.  This is what we observe: 

Presence of ‘satellites’, asymmetric distribution 



HERA Vertex Example 
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Source of satellites: 

!"#$%&'()

!"!" #$ %&'

!"#$%&'()*+$,#%- .&'%'()*+$,#%-

(!% (% ($ (!( )*)% !)%

!"&'!"&' #$+%&'

(!$(!!

*&++",)($"-#(./0#"&-+1
2-#(./0#"&-$$$$$$$$$$$$$#34($&5$6(.#(7$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$.()/#"6($4&+"#"&-$5.&8$8/"-$4(/9

&/0 1)233)456)17)! 8)93)$: &/0 1);3<)456)17)! 8)=>>/;)$:

34 4 4

(4 -&8"-/)$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$:$08
(;4$$$$$$$$$$$$$$$$$$$$$$()(0#.&-$4&+"#"6($+/#())"#($$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$<:=$08
( 4$$$$$$$$$$$$$$$$$$$$$$()(0#.&-$4&+"#"6($+/#())"#($$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$>: $08(?4$$$$$$$$$$$$$$$$$$$$$$()(0#.&-$4&+"#"6($+/#())"#($$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$>:=$08
(<4$$$$$$$$$$$$$$$$$$$$$$()(0#.&-$4&+"#"6($+/#())"#($$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$@:=$08
(A;4$$$$$$$$$$$$$$$$$$$$$$()(0#.&-$-(B/#"6($+/#())"#($$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$A<:=$08
(A?4$$$$$$$$$$$$$$$$$$$$$$()(0#.&-$-(B/#"6($+/#())"#($$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$A>:=$084
(A<4$$$$$$$$$$$$$$$$$$$$$$()(0#.&-$-(B/#"6($+/#())"#($$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$A@:=$08
(4;$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$4.&#&-$4&+"#"6($+/#())"#($$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$C?=;$08
(4A;$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$4.&#&-$$-(B/#"6($+/#())"#($$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$AC?=;$08
D&$5"##('$@$E/F++"/-+$G"#H$;I$5.(($4/./8(#(.+1D&$5"##('$@$E/F++"/-+$G"#H$;I$5.(($4/./8(#(.+1
@$J84)"#F'(+K$<$G"'#H+$L;$5&.$8/"-$4(/9K$;$5&.$(A +/#K$;$5&.$4$+/#MK$;$8(/-$5&.$8/"-$4(/9K$;$
!( L5&.$#/9"-B$"-#&$/00&F-#$+H"5#$"-$()(0#.&-$+/#())"#(+MK$;$!4 L5&.$+H"5#$"-$4.&#&-$+/#())"#(+M=



HERA Vertex Example 
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Source of asymmetry: 

z 

At small angles                        .  At larger Z, acceptance for smaller 
angles. 

ξ

electron + proton→ electron + X

electron

dσ/dξ2 ∝ 1
ξ4



HERA Vertex Example 
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Special selection of events where event vertex bias largely removed 
(angular cuts) 

Produce model with 9 Gaussians for underlying vertex distribution 

Use the Monte Carlo simulation to tell us the relationship between true 
vertex and the measured vertex 

Bin the data, and use Poisson statistics to compared the predictions with 
observations in bins of the reconstructed vertex 



HERA Vertex Example 
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BAT fit, 9 Gaussians – 27 parameters 


