Measurement of the Top Quark Mass in the $t\bar{t} \rightarrow$ lepton+jets channel at $\sqrt{s} = 13$ TeV with ATLAS

Sebastian Schulte, Andrea Knue, Stefan Kluth, Richard Nisius

ATLAS

Why is the top-quark mass interesting?

- heaviest elementary particle of the Standard Model (SM)
 → decays before forming bound states
- plays a important role in electroweak symmetry breaking
- deviations between measured properties and SM predictions offer sensitive tests for new physics
- important for the vacuum stability of the SM

PoS EPS-HEP2013 (2013) 163

How well do we know the mass?

- world combination: $m_{top} = 173.34 \pm 0.76$ GeV
- CMS combination: $m_{top} = 172.44 \pm 0.48$ GeV

The ATLAS experiment at the LHC?

- general purpose detector
- almost full solid angle
- onion-shell structure

- ID: track, charge, momentum
- ECal: energy of e and γ
- HCal: energy of hadrons
- Muon System: tracks of muons

Top-quark pair production & top quark decay

top quark production

- dominant at LHC : tt
 production

 via strong interaction
 - $\hookrightarrow \mathsf{gluon}\text{-}\mathsf{gluon}\ \mathsf{fusion}$
 - \hookrightarrow quark-antiquark annihilation
- require: $\sqrt{s_{parton}}$ has to be at least twice the top-quark mass

top quark decay

- top-quark decays almost exclusively into a b-quark and a W -boson
- different decay characterised by the W -boson decay
 - $\hookrightarrow \mathsf{quark}\mathsf{-antiquark} \ \mathsf{pair} \hookrightarrow \mathsf{leptonically}$
 - $\hookrightarrow \mathsf{charged} \ \mathsf{lepton} + \mathsf{corresponding} \ \mathsf{neutrino}$

Event reconstruction

Event selection

Event reconstructio

Event selection

Event reconstructio

Event selection

Event reconstructio

Event selection

Working point)

Event yields

Process	Events	Stat. unc.
tī	906502	629
W+jets	43586	978
Z+jets	9208	265
Diboson	1678	24
Single top	46902	132
Multijets	20324	1616
$t\overline{t} + V$	3438	9
Total sig+bkg	1031638	2013
Data	1104481	
Data/Pred.	1.07	

- ${\scriptstyle \bullet }$ background dominated by ${\it W}$ + Jets
- ${\, \bullet \,}$ mass dependence of single-top \Rightarrow include in signal
- reduction of background via cuts on 2 b-tagged jets

Data/MC 2016 , 33 fb $^{-1}$, $e/\mu+\geq$ 4 jets, \geq 2 b-tags

Sebastian Schulte

Introduction	Event selection	Event reconstruction	Summary
Event recon	struction		
4 jet event	$z \Rightarrow 24$ possible jet-parto	on assignments	
12 permut	ations left since light jet	ts from <i>W</i> -boson are indisting	guishable

- Kinematic Likelihood fit with KLFitter arXiv:1312.5595
- KLFitter input: charged lepton, missing E_T and up to four jets
 - \Rightarrow choose best permutation for calculation

KLFitter Data/MC 2016 , 33 fb $^{-1}$, $e/\mu + \ge 4$ jets, ≥ 2 b-tags

How is the top-quark mass measured?

Measurement is based on a 3D-Template method:

• m_{top} has large uncertainties from JES and bJES \hookrightarrow idea: reduce by simultaneous measurement of m_{top} , jet energy scale factor (JSF) and relative b-to-light-jet energy scale factor (bJSF)

 \hookrightarrow need full reconstruction of $tt\mbox{-final state}$

- variable 1: *m*^{reco}_{top} from reconstructed events
- variable 2: m_W^{reco} from chosen jet permutation, sensitive to JSF
- variable 2: R^{reco}_{bq} from chosen jet permutation, sensitive to bJSF

$$R_{bq}^{reco,1b} = \frac{p_T^{b_{tag}}}{(p_T^{W_{jet1}} + p_T^{W_{jet2}})/2} \qquad \qquad R_{bq}^{reco,2b} = \frac{p_T^{b_{had}} + p_T^{b_{lep}}}{p_T^{W_{jet1}} + p_T^{W_{jet2}}}$$

Determination of m_{top} :

- template parametrization of the 3 variables
- unbinned likelihood fit is performed

Signal templates $t\bar{t}$, 172.5 GeV

Fit (signal)

- m_{top}^{reco} : gauss+ landau + landau⁻¹
- *m*^{reco}_W: gauss + gauss
- R_{bq}^{reco} : gauss + gauss + landau

Settings

- 5 mass points from 170-175 GeV
- JSF = 0.96-1.04
- bJSF = 0.96-1.04

Summary & Outlook

Current status

established event selection and reconstruction with 13 TeV samples

 \Rightarrow data MC agreement: good for four jets one tag inclusive, except for b-tagging multiplicity, worse agreement for four jets, two b-tagged inclusive

- implemented the template parametrisation for several $t\bar{t}$ signal samples
 - \Rightarrow good description by the chosen functions, fit converge for all m_{top}

Next steps

- include single top production into the signal parametrization
- check closure & system. unc. with unbinned Likelihood fit

		Summary
Backup		

Object definition for 2016 data

Electrons

- E_T >27 GeV, $\mid \eta \mid$ <2.47
- Gradient isolation, TightLH
- HLT_e26_lhtight_nod0_ivarloos, HLT_e60_lhmedium_nod0, HLT_e140_lhloose_nod0

Muons

- E_T >27 GeV, η <2.47
- Medium, Gradient isolation
- HLT_mu26_ivarmedium, HLT_mu50

Small-R jets

- antiKt R = 0.4, EM-Jets
- JVT >0.59 for $p_T <$ 60GeV and $\mid \eta \mid$ <2.4
- b-tagging: MV2_c10, 77% WP

MET/MTW

- $E_T^{miss} > 20 \text{GeV}$
- $E_T^{miss} + m_T^W > 60 \text{GeV}$

AnalysisTop-02-04-24, with 25 fb-1 for 2016 data • Top Mass Ntuple production

Reconstruction with KLFitter

- Definition of kinematic Likelihood:
 - W: transfer functions for detector response
 - BW:Breit-Wigner distributions
 - different options to use b-tagging information

Likelihoodfunction

$$\begin{split} L &= BW(m_{q_1q_2}|m_W, \Gamma_W) \cdot BW(m_{l\nu}|m_W, \Gamma_W) \\ BW(m_{q_1q_2b_{had}}|m_{top}, \Gamma_{top}) \cdot BW(m_{l\nu b_{lep}}|m_{top}, \Gamma_{top}) \\ W(\tilde{E}_{jet_1}|E_{b_{had}})W(\tilde{E}_{jet_2}|E_{b_{lep}})W(\tilde{E}_{jet_3}|q_1)W(\tilde{E}_{jet_4}|q_2) \\ W(\tilde{E}_x^{miss}|p_{x,\nu})W(\tilde{E}_y^{miss}|p_{y,\nu}) \left\{ \begin{array}{c} W(\tilde{E}_l|E_l) \\ W(\tilde{p}_{\tau,l}|p_{\tau,l}) \end{array} \right\} \end{split}$$