REPORT ON HLT ROI FINDING

DEPFET Meeting ~ May 30th 2017

Content

Belle II, Phase III

release-00-08-00, VXDTF1

ROI Finding

- ✓ efficiency✓ data reduction factor
- ✓ execution time

Belle II, Phase II

tracking is not ready . . .

2017 VXD testbeam

feature/DESY_testbeam_Feb2017, VXDTF1

Definition of the Observables

efficiency: measurement of the fraction of Particles (with at least an associated RecoTrack and a PXDDigits) that have at least one PXDDigit inside and ROI

Particles with at least one related RecoTrack
and one related PXD Digit inside a ROI
Particles with at least one related RecoTrack
and one related PXD Digit

PTD = Particle with Track and Digit

data reduction factor (drf): measurement of the fraction of activated PXDDigits that are selected with ROI finding and that will be available for offline reconstruction

drf = $\frac{\# \text{ PXDDigits inside the ROIs}}{\# \text{ PXDDigits}}$

PXDDigits are intended over threshold

execution time: time reported by the statistics at the end of the basf2 execution (ms/call)

Content

Belle II, Phase III

release-00-08-00, VXDTF1

ROI Finding

✓ efficiency
 ✓ data reduction factor
 ✓ execution time

Belle II, Phase II

2017 VXD testbeam

Physics Processes at $\sqrt{s} = 10.573$ GeV

- ➡ not only Y(4S) @ Bellell ...
- let's consider the main processes to correctly estimate the observables for Bellell runs
- averages shown in the following slides are computed weighting with the cross section of the different processes
- e⁺e⁻ and γγ samples are included using the same weight and performance of the μ⁺μ⁻ sample
- machine backgrounds considered:
 - noBkg
 - stdBkg: BHWide + Coulomb + RBB + Touscheck
 - stdBkg+QED: BHWide + Coulomb
 + RBB + Touscheck + QED

Physics process	Cross section [nb]	Reference						
$\Upsilon(4S)$ —	1.05 ± 0.10	[1]						
$uar{u}(\gamma)$	1.61	KKMC EvtGen						
$d\bar{d}(\gamma)$	0.40	KKMC used for						
$sar{s}(\gamma)$	0.38	KKMC and Y(4S)						
$c\bar{c}(\gamma)$	1.30	KKMC						
$e^+e^-(\gamma)_{\text{simulate}}$	$_{\rm ed}300\pm3~({ m MC~stat.})$	BABAYAGA.NLO						
→ prescaled								
$e^+e^-(\gamma)$	74.4	-						
$\gamma\gamma(\gamma)$ not simulate	$_{\rm ed}4.99\pm0.05~({ m MC~stat.})$	BABAYAGA.NLO						
$\gamma\gamma(\gamma)$	3.30	-						
$\mu^+\mu^-(\gamma)$	1.148	KKMC						
$\mu^+\mu^-(\gamma)$	0.831	-						
$\mu^+\mu^-\gamma(\gamma)$	0.242	-						
$\tau^+ \tau^-(\gamma)$	0.919	KKMC						
$ uar u(\gamma)$	$0.25 imes10^{-3}$	KKMC						
$e^+e^-e^+e^-$ not	39.7 ± 0.1 (MC stat.)	AAFH						
$e^+e^-\mu^+\mu^-$	18.9 ± 0.1 (MC stat.)	AAFH						

ROI Settings

- the track is extrapolated only toward a selection of sensor planes to reduce the execution time:
 - tolerance ϕ = 0.15 rad
 - tolerance z = 0.5cm

- ➡ The width of the HLT-ROIs along the two directions is computed as:
 - $10 \times \sqrt{(\text{syst}^2 + \text{stat}^2)}$
 - stat = statistical error of the extrapolation
 - syst = 1 mm
- ➡ HLT-ROIs have also a maximum width of 10 cm in both directions

HLT ROI Finding Efficiency

- ➡ Efficiency decreases when including machine background, as one could expect
- QED background affects mostly PXD (which is not used in tracking here), but its effect on SVD layer 3 is not negligible
- Inefficiency is mostly due to missing intercepts of the tracks with the sensor planes

Data Reduction Factor Stacked

- The measurement of the fraction of activated pixels is important for DAQ and storage
- The estimated DRF average shown here assumes that e⁺e⁻ and γγ samples have the same DRF and will be pre-scaled to the same cross section as the μ⁺μ⁻ sample

data reduction factor STACK stdBKG

drf = # <u>PXDDigits inside the ROIs</u> # PXDDigits PXDDigits are intended <u>over threshold</u>

data reduction factor STACK stdBKG+QED

Data Reduction Factor

- \clubsuit e⁺e⁻ and $\gamma\gamma$ are included with the same weight and performance of $\mu^+\mu^-$
- the limit of 10% is the maximum drf that Bellell can stand including all sources of pixel rescue (HLT ROIs, DATCON ROIs, PXDDigitRescue)

Estimated HLT Execution Time on Y(4S)

Content

@ Belle II, Phase III

ROI Finding

- efficiency
 data reduction factor
- execution time

@ Belle II, Phase II

@ 2017 VXD testbeam

feature/DESY_testbeam_Feb2017, VXDTF1

Region of Interest Finding at DESY

- ➡ ROI Finding modules run on HLT as soon as detectors where working
- → Different ROI parameters tested (full-frame ROIs, ...): no problems encountered
- the finding algorithm was slightly changed in order to cope with different TB geometry wrt Bellell
 2400
 2400
 2000
 1800
 1600
 1400

The Analyses & the Simulation

efficiency & execution time evaluated on simulations

- the telescope was not available → efficiency evaluated on simulation
- the hlt log files from the do not contain the execution time, not shown here

data reduction factor

- can be estimated from simulation (same as Bellell case)
- can be estimated from data
 - choose a run with no ROI Finding running on HLT \rightarrow Run111, only one working PXD sensor
 - run tracking, ROI Finding and PXDDigit filtering offline

Run number	RUN/TEST 👳	Beam -	Beam Energy 	Magnet -	Magnet Field 	Cooling -	Nominal C02 temperature [°C]	Geometry =	Track finder	Trigger rate (in/out) [Hz]	Rotation
111	COMBINED RUN	ON	5.0	OFF	NO	ON	-15	2 PXD	VXDTF	120	0

ROI Finding Efficiency at DESY

simulation

- geometry is simple, high momentum tracks, low track multiplicity
- inefficiencies due to:
 - lack of intercepts for v4, v5 (large ROIs)
 - too small ROIs for v1,v2,v3 (small ROis)
- Execution Time evaluated on simulated events at KEK, not equivalent to the HLT
- Tracking + PXD Data Reduction Execution time < 5ms/call, with large fluctuations (15ms/call)
 - included modules: pattern recognition (VXDTF1), track fitter,
 PXDDataReduction

Efficiency

Data Reduction Factor

20% to 50% disagreement between simulated and measured data reduction factor due to the fact that detector&electronic noise is not included in the simulation

ROI Report

Conclusions

- ROI Finding software is in good shape, the algorithm has been tested on the main physics processes with complete machine background yielding an average:
 - efficiency of 93%
 - data reduction factor of 6.5%
 - execution time < 500 ms/event for SVD clustering, SVD+CDC tracking & PXDDataReduction .This test should be repeated on the HLT itself.
- the analysis of DESY testbeam data has been performed confirming results of past testbeams

Future Plans

- 1. Bellell Note with the results shown, to be used as reference (in preparation)
- 2. study ROI performances with VXDTF2
 - then re-evaluate the sources of inefficiencies
- 3. simulations with *Phasell* geometry