ONSEN Lab Tests and Development

<u>Thomas Geßler</u> Dennis Getzkow Wolfgang Kühn Jens Sören Lange Klemens Lautenbach Simon Reiter

II. Physikalisches Institut, Justus-Liebig-Universität Gießen

21st International Workshop on DEPFET Detectors and Applications

28–31 May 2017 Ringberg Castle

JENNIFER (Japan and Europe Network for Neutrino and Intensity Frontier Experimental Research), an MSCA-RISE project funded by European Union, grant n.644294

Thomas Geßler (JLU Gießen)

ONSEN Lab Tests and Development 21st DEPFET Ws., May 2017 1 / 21

Debugging of Data Corruption

Selector Data Flow: "ONSEN Trigger Mismatch" Sources

- ► PXD parser: Sensitive to event/framing errors in PXD data → Internal event synchronization goes out of sync
- ▶ Pixel filter: Produces framing errors if inputs out of sync; state machine reset not properly implemented → Cold start necessary

Test Setup in Gießen

2/4

April / May 2017

Firmware Tests

Dennis Getzkow

Problematic Conditions

Invalid CRC in HLT frame	Fragmented first DHH data (cut in middle of ZSD)	Double DHC Start frame at the beginning of run	
ONSEN Merger discarded this data but also the beginning of the next (valid) HLT frame	Internal buffer management did not end the event properly	Additional / faulty DHC Start was not discarded properly in ONSEN	
ONSEN Merger blocked any incoming HLT data after invalid CRC	Resulted in " <u>event fusion</u> " of the first DHH data (DHE data of second event started in ZSD of first event)	Lead to <u>event mismatch</u> but also to internal backpressure (Selector AMC)	
	Corrupted "only" two events	Softreset needed for getting rid of backpressure but event mismatch was still occuring	
Coldstart needed	No coldstart needed	Coldstart needed	

ONSEN firmware update: these three conditions don't cause trouble anymore 4/4

April / May 2017	
------------------	--

ONSEN Emulator

- ► C++-Program by S. Reiter, **PXD data reduction in software**
- Loads test data from file (PXD/HLT/DATCON) (requires 0xBE12DA7A header)
- Similar memory management as ONSEN
- Processing time example 1000 events, 40 % PXD occupancy = 780 MB pixel data:
 - **ONSEN:** < 2 seconds after sending HLT (1 Selector node)
 - Emulator: (Intel i7 @ 3.4 GHz, 16 GB RAM):
 - ▶ 11 min, 50 sec with 1 thread
 - 2 min, 40 sec with 8 threads

Test Results and Progress

- Several framing and event error cases were reproduced with test data, identified, and fixed
- Verified by testing with corrupt test data

 → patched PXD parser correctly sanitizes PXD input
- Correct ONSEN data processing verified with software emulator
- Next steps:
 - Replace with rewritten PXD parser

 increases robustness and adds better error analysis
 - Do the same thing for DATCON parser
 - Revise Pixel filter input state-machine, fix reset

Debugging of ONSEN Internal Links

ONSEN Internal Links (for ROI Forwarding)

- ► → 4×600 Mbps LVDS Carrier-AMC links
- ▶ → 3.125 Gbps MGT ATCA Backplane links

MGT-Links on ATCA Backplane

- For Belle II, ONSEN will be scaled from 2 to 9 ATCA boards
- First scaling tests showed troubling results: With "Merger" firmware sending to multiple boards, all backplane links become unstable
- Debugged in detail by S. Reiter in Gießen
- Problem: Crosstalk between Ethernet IO and one MGT power supply
- \blacktriangleright Solved by avoiding that link \rightarrow use different ATCA slots
- Additionally, Aurora reset logic had to be revised

LVDS-Links Between Carrier and AMCs

- Connection Carrier FPGA AMC FPGA uses serial (LVDS) links
- Serial clock is distributed from Carrier to AMCs
- Clock/data phase shift is compensated by delay, determined by tuning
- Problem 1: Strong delay difference between Carrier/AMC combinations
- Problem 2: Small temperature drift of the delay
- Solved by implementation of online self-calibration mechanism

Link Tests After Fixes

- Forward HLT packets from
 - 1 Merger in
 - 1 Merger-Carrier to
 - 4 Selector-Carriers with
 - 2 Selectors each
- Selector output recorded and verified (i.e., compared to expected output from emulator)
- ▶ 60-hour test with low rate (\sim 10 Hz): no link or data errors
- 30-minute test 2 kHz: no link or data errors
- Short test with 30 kHz and DATCON data: no link or data errors
- Next: Full-scale test (8 Selector-Carriers) when all boards return from PERSY and repair at IHEP

Phase 2 Readiness

ONSEN (Phase 2) Shelf in Tsukuba B3: Damage

 Chassis of the ONSEN Prototype ATCA Shelf (planned for Phase 2 ONSEN) was damaged/warped during shipment to KEK

ONSEN 19-Inch Rack in E-Hut

The 19-inch racks foreseen for ONSEN in the E-hut don't have enough clearance to accept the deformed shelf

ONSEN Phase 2 Preparation: Outlook

KEK ONSEN shelf must be replaced

- Buy a new shelf or
- Send replacement from Gießen (2-slot shelf with RTM-slots sufficient)
- ► DAQ group offered to buy a shelf for R&D and lend it to ONSEN during Phase 2 → will be discussed at B2GM
- Two ONSEN experts will be at KEK for one month from September, more from January 2018
- Support for Onsen team at KEK during phase 2 and VXD vosmic data taking provided by JENNIFER

Compute Node Upgrade for PANDA (Design and Production by the IHEP Beijing Trig Lab)

Compute Node Upgrade: Carrier Board

- First stage: upgrade CNCB (but remain compatible with current xFP)
- ► FPGA: Change to Xilinx UltraScale architecture

	Virtex-4 FX60 (CNCB)	Virtex-5 FX70T (xFP)	Kintex UltraScale 060 (Upgrade)
Registers	50k	44k	663k
LUTs	50k $ imes$ 4-input	44k $ imes$ 6-input	332k $ imes$ 6-input
DSP Slices	128	128	2760
BRAM	4 Mb	5 Mb	38 Mb
MGT	$16~ imes~6.5~{ m Gbps}$	16 $ imes$ 6.5 Gbps	$32 imes16.3~{ m Gbps}$
CPU	PPC405	PPC440	-

► No more hard-core CPU → Slow control on MicroBlaze or light-weight option like IPbus Compute Node Upgrade: Carrier Board

- ▶ **RAM:** 2 GiB DDR2 SODIMM \rightarrow 16 GiB DDR4 (8 chips)
- ► Configuration: Flash/CPLD (slave serial) → automatic from NOR Flash (master BPI)
- GbE switch: 4 AMCs, 1 switch FPGA, 1 uplink to ATCA Base Interface
- 16.3 Gbps MGTs
 - 4 links to each AMC card (currently: 4×600 Mbps LVDS)
 - 14 links to ATCA backplane
 - 1 link to RTM (10G Ethernet)
- Programmable MGT clock
- Keep:
 - JTAG chain/AMC decoupling
 - I2C buses, sensors
 - IPMC connector

Compute Node Upgrade: Rear-Transition Module (RTM)

- On-board USB-JTAG programmer (Digilent)
- UART-USB interface for 4 AMC cards + switch FPGA
- USB hub for UART interfaces, IPMC
- SFP+ cage for switch-FPGA 10G Ethernet

CN_V4 Design Status

Jingzhou ZHAO, Zhen-An LIU, Wenxuan GONG Trigger Lab, IHEP, Beijing

CN_V4 Block diagram

CN_V4 design status

• Schematic of Carrier board is under designning.

Compute Node Upgrade: Current Status and Belle II Application

- Update: Schematics finished, PCB design ready in about two months
- First prototypes expected later this year
- Possible replacement for ONSEN carrier boards (only 2 spares)

 → requires significant firmware changes
- Possible upgrade path for ONSEN hardware

Firmware-Version Management

Firmware-Version Management

- Problem: FPGA Firmware version (e.g., DHH, DATCON, ONSEN) should be identifiable online and in data files
- Idea: Store the first 32 bits of the git commit hash in the FPGA's USERCODE or USR_ACCESS (> Virtex-5) register
 bitgen -g UserID:0x\$(git rev-parse --short=8 HEAD)
- Make it accessible to EPICS through a PV, and log it
- Maybe put look-up table in EPICS to pretty-print tagged versions git tag | while read t; do echo \$(git rev-parse --short=8 \$t) \$t; done d5cb6ce8 v1.00.a 10eb7c50 v1.01.a

• • •

- According to Dima, DHH already implemented a similar mechanism:
 - Store a time stamp and board number in USR_ACCESS
 - Write the time stamp to a git tag to identify the commit