Summary

Status of Automatization of Measurements and Logging for the Mass Testing 21st DEPFET Workshop Ringberg

Philipp Wieduwilt, Harrison Schreeck, Benjamin Schwenker, Ariane Frey

Universität Göttingen

philipp.wieduwilt@phys.uni-goettingen.de

29. Mai 2017

Content

1 Automated Testing Procedure (Software)

- Automatic Start-up and ConfigDB
- Measurement-Analysis-Update Cycle
- Automated Logging
- Status of Measurement Packages

2 Module Summary and Grading

Goals for Automated Mass Testing

- use central configDB instead of local ini-files
- use automatic power-up
- several testing packages define pass or fail and a grading
- automated logging using Archiver and Elog
- result: commitID of fully optimized module parameters

For information on the hardware side (construction and status of test setups), see talk by Philipp Leitl.

Automatic Start-up and ConfigDB

When a new module is going to be connected.

configDB templates

https://confluence.desy.de/pages/viewpage.action?pageId=45740588

- generate a configDB entry from templates using ~/epics/templates/generateTemplate.py
- **2** specify device type (IB,OB,IF,OF) and name (e.g. $W31_{-}IF$)
- O contains working values for the respective module type
- commit to configDB and obtain a new commitID

[INFO] configDB

- using configDB server running in Heidelberg
- one file per module for mass testing
 - \rightarrow for the experiment, 40 module files are simply merged

Summary

When a new module is going to be connected. (2)

hostconfig

- change the module type for the DHH IOC in ~/epics/settings/host-HOSTNAME.ini
- specify device_module (pxd9, hybrid5) and module_type (ib,ob,if,of)
- described here https://confluence.desy.de/display/ BI/Use+the+start-epics+script

What needs to be done to power up a module.

automatic powerup and configuration

With using the ps-sequence, dhh-sequence and ps-control IOCs, bringing the module in the running state is fully automized.

- set the commitID obtained earlier to the system
 - via caput PXD:B:config-committid 123

• Or via Commit ID: 323 Select...

- bring the system from state OFF to state
 - STANDBY: ASICs powered and configured
 - **PEAK**: matrix powered

Current state: PEAK OFF STANDBY PEAK Module Current state PEAK Current state Related OPIs Module Current state Related OPIs 1011 Disconnected Disconnected PS DHE 1012 Disconnected PS DHE 1021 Disconnected Disconnected PS DHE 1022 Disconnected PS DHE	Global State						_
Module Current state Related OPIs Module Current state Related OPIs 1011 Disconnected Disconnected Disconnected Disconnected Disconnected PS DHE	Current state:	PEAK		OFF	STANDBY	PEAK	
1011 Disconnected Disconnected PS DHE 1012 Disconnected Disconnected PS DHE	Requested state:	PEAK					
	Module Current state	Related OPIs	Module	Current st	ate	Rela	ted OPIs
1021 Disconnected Disconnected PS DHE 1022 Disconnected PS DHE	1011 Disconnected Disconnected	PS DHE	1012	Disconnect	ed Discon	nected PS	DHE
	1021 Disconnected Disconnected	PS DHE	1022	Disconnect	ed Discon	nected PS	DHE
1031 UNKNOWN Follow global PS DHE 1032 PEAK Follow global PS DHE	1031 UNKNOWN Follow globa	PS DHE	1032	PEAK	Follo	w global PS	DHE

Measurement-Analysis-Update Cycle

Starting the testing of a module.

- make sure that the DHE \leftrightarrow DHP data transmission is working \rightarrow optimize the highspeed links (*HS links*)
- per DHP, three parameters are used to tune the HS link \rightarrow vary parameters and **measure** link survival for 5 min
- for each DHP, analyze data to find optimal parameters
- **update** the respective parameter values to the current system and update the configDB commit

measurement \Rightarrow analysis \Rightarrow update

Same procedure as last year, James...

- with optimized HS links, optimize DCD ↔ DHP data transmission (*delays*)
- with optimized delays, optimize DCD analog part (*ADC curves*)
- etc.
- \Rightarrow provide unified interface to individual measurements

[INFO] coding guidelines

- each measurement type is one package
- same interface for calling each measurement defined in guidelines

https://confluence.desy.de/display/BI/Coding+Guidelines

- ini-files steer measurement/analysis per package
- a set of default ini-files is provided for each package for the mass testing

Automated Logging

Keeping track of what we are doing.

There are several services that log the system during the testing and that provide the output of the indivdual optimization steps.

- Archiver (local)
 - archives the status of all PVs of the system over time
 - can follow and recall the system status in great detail to investigate problems
 - simple web interface
 - https://confluence.desy.de/display/BI/Setup+of+the+ EPICS+Archiver+for+Lab+Setups

STOMP server

- stores log messages (errors, warnings, infos, ...)
- from base software EPICS/CSS/...
- from measurement and analysis scripts
 - logging library available https://confluence.desy.de/display/BI/Logging

Archiver

Keeping track of what we are doing. (2)

automated eLog entries

- collects measurement information (type, module, starttime, duration, ...)
- collects analysis results (plots, statistics, ...)
- elog library available https://confluence.desy.de/display/BI/Automated+ ELOG+entries

• config_utils Configuration class

- saves state of all PVs before measurement
- restores state after measurement
- dumps all PV values at specific point in time to file

[INFO] eLog server

- eLog server running at DESY (elog.belle2.org)
 - \rightarrow central eLog server for TB, cosmic runs, ...
- one logbook for mass testing, one per lab

eLog - Measurement

Message ID: 9 Entry time: 2017/05/26 Fri 18:25 CEST						
Author:	Belle2					
Category:	Scan					
Type:	ADC Scan					
Device:	hybrid5					
Module:	H5006					
Moduletype:	None					
CommitID:	323					

ADC Scan started at 17:6:49. Sweeped parameters are: dacipsource from 80 to 100 in steps of 5 dacipsource2 from 80 to 100 in steps of 5

In total 20 channels were scanned. Starting from 64 up to 83, every 1 channel.

```
Measurements stored at: /run/media/belle2/DATA2/measurements/H5006/adc_curve/dhe/ipsource-ipsource2/2017_08_26_003
Commit:D: 323
DHE: H1032
FS: P1032
ADC Scan stopped at 17:25:18.
Total time passed: 0:18:29
```

• details of measurement (modules, scan ranges, duration)

attach PV dump files

eLog - Analysis

ior:	Belle2
gory:	Analysis
	ADC Analysis
ce:	hybrid5
ule:	H5006
uletype:	None
mitID:	323
psource2 from	are: 0 to 100 in steps of 5 80 to 100 in steps of 5 1s were analyzed. Starting from 64 up to 83, every 1 channel.
psource2 from	0 to 100 in steps of 80 to 100 in steps of 1s were analyzed. Sta: d by analysis: 00 100 hows: : 0 hannels: 1

• summarize analysis results and attach plots

Status of Measurement Packages

Summary

Status and Responsibilities

measurement	responsibility	tested on new PXD9	comply with coding guidelines	to do	comment
HS Link Scan	Bonn	TESTED @ TB	NO		
HS Link iBert Scan	Bonn/Munich	IN DEVELOPMENT	NO		
Delays	Bonn	TESTED (1) TB	NO		
ADC Optimization (also calibration (DHE current source))	Gö	TO BE TESTED @ PERSY	YES	test on new PXD9 modules, confirm multi-ASIC functionality add logging	
Offset DACs & Pedestals	Bonn/Munich	TO BE TESTED @ PERSY	NO		
Gated Mode (& clear efficiency)	HLL/MPP	MEASURED @ HLL	NO		setup specific, like pulse generator and laser control
Source Scans	HLL/MPP	TO BE TESTED @ PERSY	NO		
Laser Scans	HLL/MPP	TO BE TESTED ON PXD9	NO		setup dependent (control of laser)
DHP Temperature Diode	Bonn	IN DEVELOPMENT	NO		
DEPFET IV-curve	Gö/Munich	IN DEVELOPMENT	NO		characterization of DEPFET, determine threshold voltage for radiated modules
sample point curve	Bonn/Munich	IN DEVELOPMENT	NO	verify fast enough DCD sampling time	
mapping.py and Plotting	Gö	IN DEVELOPMENT	NO	use u-v coordinates, label ASICs in plots, rotate by 90°	decided to use Belle II mapping and displaying of matrix frames
number of bad pixles	IFIC/Munich	IN DEVELOPMENT	NO	compare pedestal maps for different gate on voltages	should be part of the probe card testing before the kapton attachment

https://confluence.desy.de/display/BI/Responsibilities

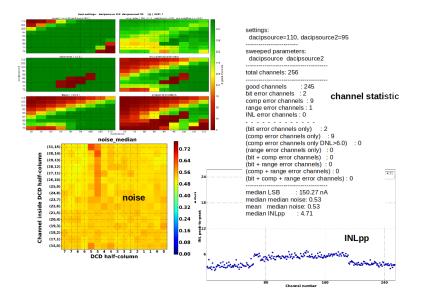
Status and Responsibilities (2)

- HS links
 - ETA: next week
- DCD↔DCD delays
 - ETA: next week
- ADC curves
 - running on Hybrid5 and PXD9
 - no results on PXD9 yet due to data reception problems
- offset DACs
 - ETA: ?

- gated mode
 - see talk by Felix
- source scans
 - ETA: ?
- DHP temperature
 - see talk by Leo
- DEPFET IV-Curve
 - ETA: four weeks
- sample point curve
 - ETA: ?
- mapping and plotting
 - ETA: two weeks

Example: ADC Curve Package

purpose:


• optimize the DCD analog performance

idea:

- sweep current source (DHE or DEPFET pixels) and record 256 ADC curves per DCD
- vary DCD parameters IPSource, IPSource2, IFBPBias (DACs) and supply voltages RefIn and AmpLow
- analyze curves for linearity, noise, missing codes, communication errors
- define quality criteria and find parameter space point where most of 256 channels fullfill requirements

Module Summary and Grading

Summary

Example: ADC Curve Package (2)

status:

- complies with coding guidelines
- automated eLog logging implemented
- tested on Hybrid5 and running on PXD9
- PXD9 results still pending

scan ranges and time requirements:

- have proven on Hybird5 with DCD4.X that optimal parameter space point is very similar among several chips
- can reduce scan ranges and current source granularity \Rightarrow aim for 10 h per module

Module	IPSource	IPSource2	IFBPBias	RefIn [mV]	AmpLow [mV]	gain/Clock	comment
H5.0.24 (DCD4.1)	70	60	75	690	200	En30, 76MHz	DHE source
H5.0.13 (DCD4.1)	70	60	75	690	200	En30, 76MHz	DHE source
H5.0.14 (DCD4.2)	75	65	70	680	200	En30, 76MHz	DHE source, same for gate source
H5.0.15 (DCD4.2)	70	55	60	700	200	En30, 76MHz	strange gain behaviour
H5.0.26 (DCD4.2)	70	60	70	650	200	?	

scan ranges:

	start	end	step
IPSource/2 [DAC]	50	90	5
RefIn [mV]	600	800	50
Amplow [mV]	100	300	50
IFBPBias [DAC]	55	85	5
IPSourceMiddle [DAC]	IPSource-5	IPSource+5	1

• gain: En90 (\approx 100 nA/ADC slope, \approx 25 μ A range)

Module Summary and Grading

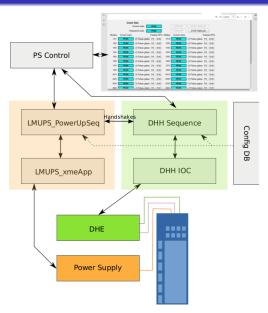
Is it working?

Need to define quality criteria and how to handle problematic modules.

- each measurement package defining ✓ or × and producing a condensed plot/table of optimization result
- if a module failes a standard scan procedure with standard scan ranges
 - redo with larger scan ranges?
 - put aside/send to another lab for detailed investigation?
- automatically collect condensed per module information on summary eLog page
- ideally: mass testing of module follows a clear checklist and can in principle be done by anyone

Summary

- moved from ini-files to automatic power-up
 - greatly simplifies operational module handling
 - using configDB as centralized configuration service
- coding guidelines implemented to standardize and automize measurement scripts
- several services logging and collecting optimization results
 - Archiver running in all labs
- ADC curve package
 - reworked according to coding guidelines
 - automated eLog summaries
 - final tests on PXD9 pending


Backup

Testing of Latest DHE Firmware

firmware 20170523-

- large memory for taking memdumps of 4 ASICpairs simultaneously
- gated mode support
- internal trigger
- internal DHE current source
- sucessfully configured Hybrid5 setup in Gttingen
- taking memdump/pedestals working fine
- taking zero-suppressed data manually via DHH ADV widget and internal trigger working fine
- ADC curve measurement: no data recorded
 - suspect IPBus triggering or DHE internal trigger interface changed
 - under investigation

IOCs Interplay

ADC Curve Package - Plans

[INFO] possible ADC curve improvements

- speeding up DHE current source measurements on DHE level
- use non-linear multi-dimensional optimization algorithms to optimize in 5D parameter space
 - \rightarrow Bachelor student Jonas Pöhls working on that in Göttingen
- tidy up code and identify and improve bottle-necks