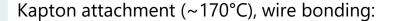
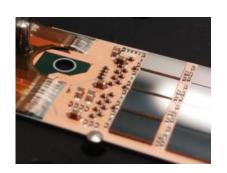
Modules Overview - May 2017 -

Module Assembly – overview

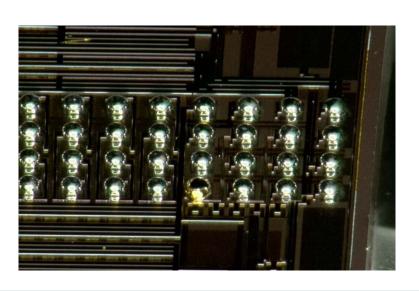


Flip Chip of ASICs (~240°C):

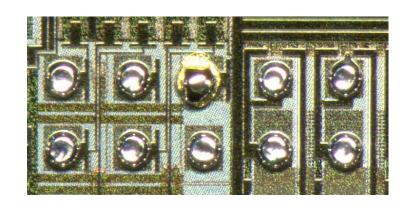
- - → DHP bumping at TSMC, DCD bumping via Europractice
 - **SWB** bumping on chip level at IZM Berlin
- @ IZM Berlin


- Passive components (termination resistors, decoupling caps)
- Dispense solder paste/jetting of solder balls, pick, place and reflow

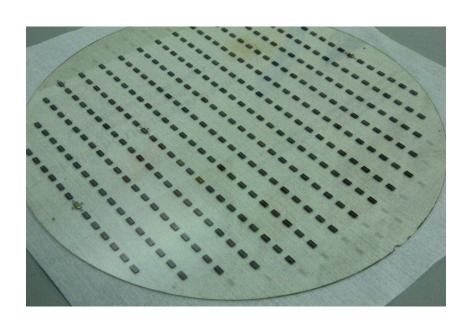
- Solder paste printing on kapton,SnBi solder
- Wire-bond, wedge-wedge, 32 μm Al bond wires
- @ MPP Munich

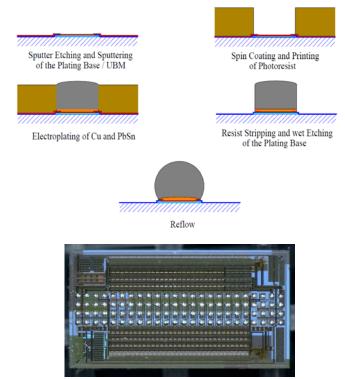





SwitcherBv2.1

- ▷ The Switchers have to be bumped on single die level
- On one pad the substrate pad and only on this pad
 - ∀ Very little or no UBM deposition
- Main difference to old SwitcherBv2.0
 - → Different passivation (1µm Nitride/Oxide <-> PI)
 - ☐ Guard ring of the chip exposed, connected to bulk
- Work around possible but extremely "ugly"

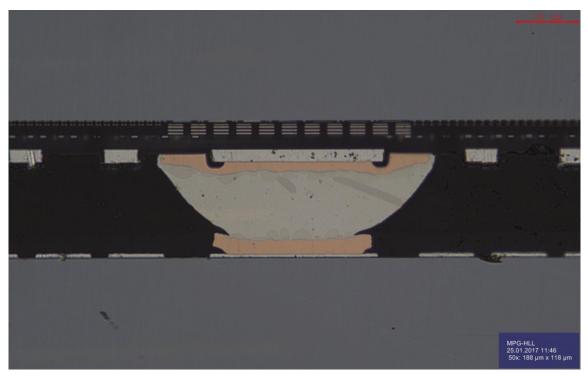




Bumping on "wafer level" at IZM

- \triangleright Looking for a another bumping technology \rightarrow IZM
- Assemble a "wafer" (glass) by pick-and-place of Switchers to support with alignment marks
 - → Accuracy good enough for 150µm pitch, subsequent wafer level lithography possible
 - → Possibility to apply standard technology bumping by electro-plating

> **Tests run at IZM was positive**, 24 bumped chips delivered, 18 tested to be good



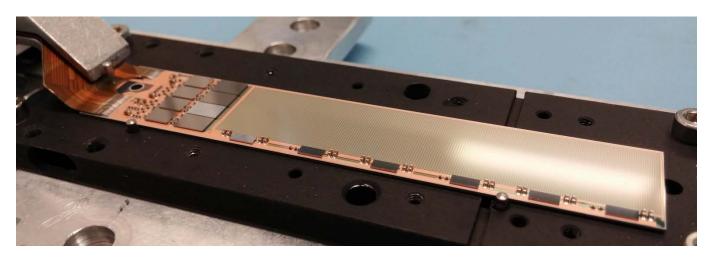
bump bonding w/ new IZM bumps

> Test assemblies and cross sections

- ▷ All okay, can't be better ...
- > 439 SWB2.1 bumped at IZM

Switcher Chips	Read JTAG ID	Current Consumption (1.8V)	Current Consumption (HV)	64 HV- Channels	Bias Current	Boost Current
89	✓	✓	1	1	1	1
10	1	✓	1	X *	1	1
1	1	X	X	×	1	1

^{*} It seems a contact problem between needles and switcher. Half of the channels are working! (clear or gate signal)



6 modules for PERSY and Beam Test

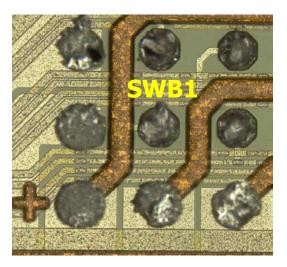
- - → DCDB4.2 (final), SWB2.1 (final, "fishy" PacTech bumps), DHPT1.1
- - → DCDB4.2 (final), SWB2.0 (last samples of the old version), DHPT1.1
- - → DCDB4.2, SWB2.1 (IZM bumps), DHPT1.1
- - → Apart from the expected issues with the "fishy" switcher bumps
- ▷ SMD, Kapton attachment as usual

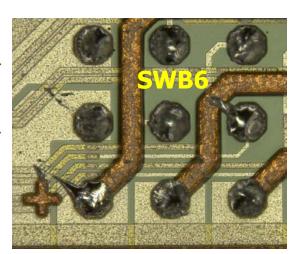
9

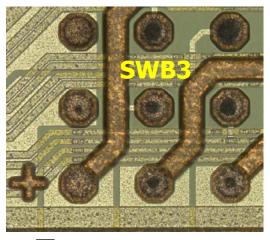
Status of the "persy1" and "persy2"

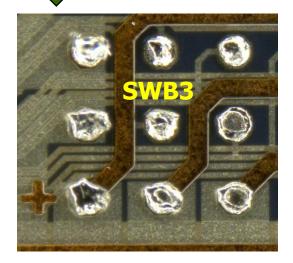

- W31-IB and W31-OB1 (batch "persy1")
 - → JTAG configuration fails as soon as the Switchers are in the chain
 - → DCD, DHPT okay, also boundary scan of EOS
 - → Data generators at PERSY/Test beam
 - → JTAG chain repaired after 2nd reflow
 - → W31-OB1 has clear-on/clear-off/gate-on "short"
- - → JTAG configuration okay, EOS okay
 - → See effect of bad substrate bump on the Switchers (3/6 SWBs dead) but operational
- - → JTAG configuration okay, EOS okay
 - → Gated mode tests, operational
- W37-IB, W31-OB2 (batch "persy2")
 - → DCDB4.2, DHPT1.1, SWB2.1 (IZM bumps)
 - → 2nd reflow W37-IB → JTAG okay, W31-OB2 used for destructive tests
 - :- a 2nd reflow at higher temperature helped to repair the modules (SWB) JTAG)
 - :- high ohmic "short" on W31-OB1 ... not understood ...

W31-OB2: SWBs removed, check solder joint









After 2nd FC & removal

reasons, mitigation, "rehearsal"

▶ Reasons

- → **Reflow temperature not reached** in the middle of the module due bad contact to the heat plate
 - → Bowing of the module, too little contact area (perforation on balcony..)
 - → In this case a second reflow with HCOOH or flux would help
 - **→** W31-IB was actually repaired after a second reflow!
 - → increase reflow temperature (~10K)
- → **Possibly CuO residues on pads**/insufficient pre-treatment before bump bonding
 - → Add another cleaning step before bonding
- > Test with sensors with non-functional matrix region (implant accident PXD9-3)
- ▶ Pre-production batch PXD9-EMCM1
- \triangleright Production of two sets of modules: 2x(IF/IB) 2x(OF/OB) → 8 modules
 - → Now used as data generators for system tests (PERSY)
 - → Old chip set DCDB2/DHPT1.1/SWB-Dummy
 - → EOS will be fully functional, remove part of dummy SWBs to check wetting of pads
- > **PXD9-EMCM2**: set of modules with final chip set (DCDB4.2/DHPT1.2b/SWB dummies)
 - → See testing session ...

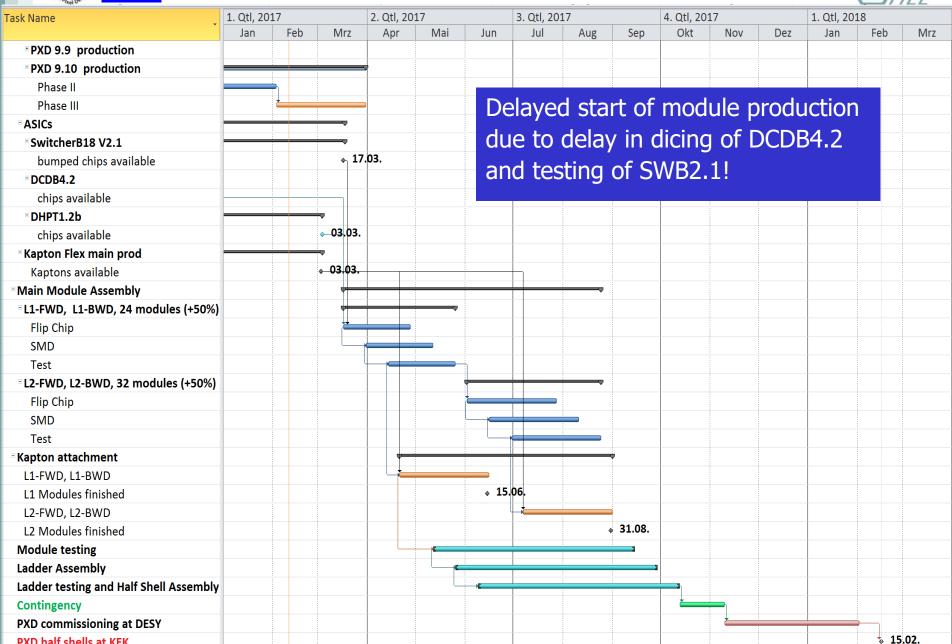
Phase 2 batch with improved reflow profile

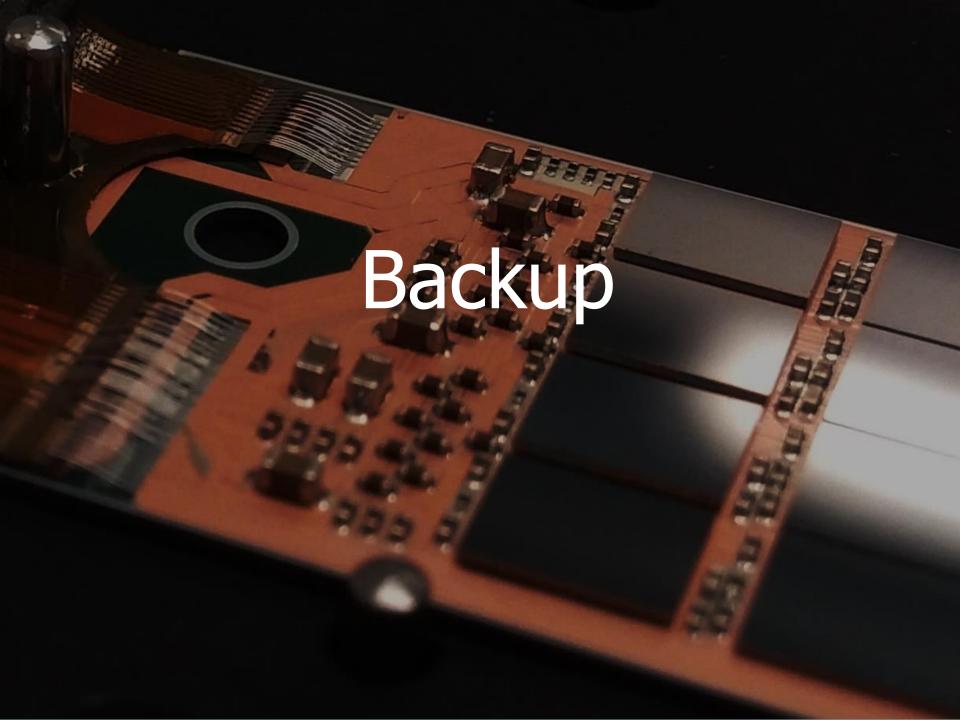
- Sensors from pre-production batch PXD9-7
 - → set1: W38-IB, W37-IF, W37-OB1, W37-OF1
 - → set2: W40-IB, W40-IF, W38-OB1, W40-OF1
- Final ASICs DCDB4.2, DHPT1.2b, SWB2.1 (IZM bumps)
 - → All ASICs tested (KIT, Bonn, KIT)
- \triangleright Flip Chip at IZM of 1st set in about 1 week, SMD at HLL in two days ...
- - → W37-IB
 - → EOS okay, but one SWB wrongly placed
 - → now at IZM for replacement, to be re-tested as soon as back
 - - → EOS fully functional, JTAG of Switchers also okay. **Biasing of the matrix revealed a short between clear-on and clear-off.**
 - → W37-OF1
 - - → EOS and balcony is functional, module ready for kapton attachment

What's next

- > The problem of the bad soldering seemed to be solved
- ▷ If not, a second reflow will help....
 - → Continue with FC of 2nd set of batch "phase2"
 - → To be ready still this week → SMD, testing, next week
- - → The orientation is clearly described in interface document
 - https://confluence.desy.de/download/attachments/43903269/FC-SMD-Interface-document-version-15.pdf?version=2&modificationDate=1484808702509&api=v2

Most worrisome


- → Not understood short between clear-on/clear-off (W37-OB1 and W31-OB1)
- → Remove all SWB, one by one and check where the short is ... have to understand this!!
- → In an ideal world, I would wait for the conclusion before doing 2nd set, but there is no time ...
- - → Have to start production of inner modules soon, will prepare all still this week
 - → All ASICs, Sensors available



Schedule from Jan. 2017

