DHPT data rate tests

21st Internat. Workshop on DEPFET Detectors and Applications Schloss Ringberg, Tegernsee

Andrey Rabusov, Igor Konorov, Dmytro Levit

Technische Universität München, Fakultät für Physik, E18

31 May 2017

Overview

- Introduction
 - Plan
 - DHQ
- Occupancy test
 - Test procedure
 - W/o pedestal subtraction/CM
 - With pedestal subtraction/CM
 - Overlapping triggers
 - Occupancy test summary
- Frame ID consequense test
- Bias and Bias D optimization
- Conclusion

DHQ (DHH DAQ) features:

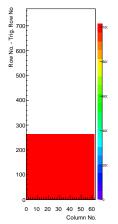
- Receives UDP frames from DHC or reads BonnDAQ/TUM files
- Builds event from received frames
- Decodes hits addresses
- Checks format errors in incoming data
- Could be used for fast raw files offline analysis
- The code is available as a library
- Closes NIH-bug in TU Muenchen

The code available on Stash (pxd_sc_dhh/dhh_support_sw/dhq)

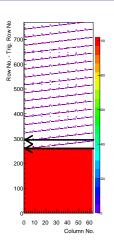
Occupancy test purposes

- Ensure that DHP continues work with very high occupancy (more than 3%)
- Find conditions with maximum possible occupancy operation

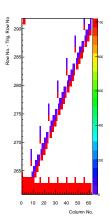
Test steps


- Pattern with occupancy level (range from 0 to 100%) uploaded into DHP memory
- Readout window from 1 to 192 gates (full frame)
- Test done in three modes:
 - w/o pedestal subtraction and w/o common mode correction
 - with pedestal subtraction and w/o common mode correction
 - with pedestal subtraction and with common mode correction
- Trigger frequency 100 Hz, number of events approx. 10 000

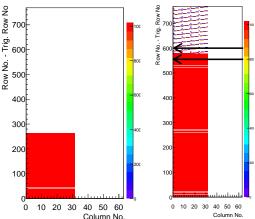
All tests on Stash (pxd_sc_dhh/dhh_support_sw/dhh_test)


Occupancy test Frame ID consequense test Bias and Bias D optimization Conclusion

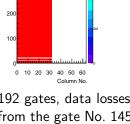
○●○○○○


100% occupancy without CM

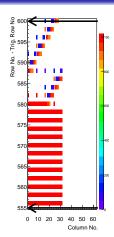
66 gates. No data losses



192 gates, data losses from the gate No. 67

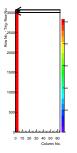


Structure of remaining hits after data loss

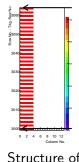

25% occupancy with Common Mode Correction

66 gates, no data losses

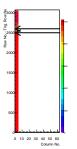
192 gates, data losses from the gate No. 145

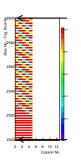


Structure of remaining hits after data loss

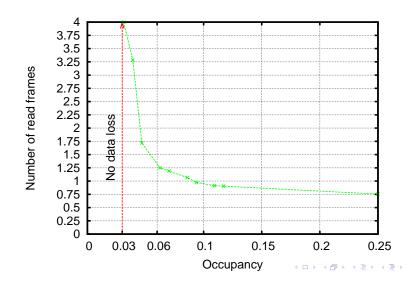

Introduction

- Trigger window is enlarged to 4 ×768 rows to emulate overlapping trigger
- FCK length stays corresponding 768 rows
- Trigger frequency 100 Hz


Overlapping trigger emulation


3% occupancy

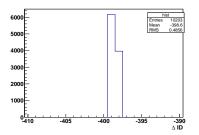
Structure of pattern



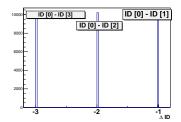
4% occupancy, data loss

Structure of lost hits

Maximum possible occupancy w/o data loss


Introduction

Occupancy test

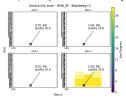

Test summary

- DHP can send 66 fully occuped gates without data loss
- In case of overlapping trigger 3% occupancy level has been achieved
- DHP handles data correctly even with 100% occupancy level just throwing away the data

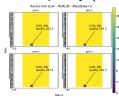
Frame ID consequense test

 Difference between the last DHP frame ID in the previous event and the first frame ID in the current event

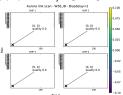
Difference between DHP frame ID "inside" the event

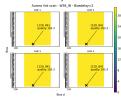

Bias and Bias D optimization

- Introduction
 - Plan
 - DHQ
- Occupancy test
 - Test procedure
 - W/o pedestal subtraction/CM
 - With pedestal subtraction/CM
 - Overlapping triggers
 - Occupancy test summary
- 3 Frame ID consequense test
- Bias and Bias D optimization
- Conclusion



Bias and Bias D optimization, 76.5 MHz


Nominal parameters (Core Voltage 1.2V, IO Voltage 1.8V, frequency 76.5 MHz):


Low frequency (62.5 MHz):

76.5 MHz with increased voltage: Core 1.2V, IO 1.9V:

Core 1.3V, IO 1.8V:

Conclusion

Occupancy test

- DHP recovers itself successfully even with 100% occupancy just throwing away the data
- No data loss with 3% occupancy

Optimal stable link parameters

 Optimization of Bias and Bias D parameters almost does not improve the stability of links

Bias and Bias D optimization