21st International Workshop on DEPFET Detectors and Applications

28th – 31th May 2017 Ringberg Castle

Status DHPT 1.2b

Leonard Germic, B. Paschen, F. Lütticke, T. Hemperek, C. Marinas, H. Krüger and Norbert Wermes

21st International Workshop on DEPFET Detectors and Applications

28th – 31th May 2017 Ringberg Castle

Status DHPT 1.2b

- 200 chips tested (2 Wafers) yield 97%
 - 6 not working
 - 3/6 no jtag response
 - 2/6 memory errors
 - 1/6 low power consumption (not responding)
- Temperature sensor
 - Script is ready
 - Used for Hybrid 5 and PXD-EMCM2
 - Read out is limited by DHE software
 - Number of JTAG clock cycles is 2.5M instead of 120k
 - Cycles send in bursts of 655 and Period of 5ms \rightarrow overall time ~20s

if __name__ == "__main__":

```
"' Here you have to load the conig.ini
```

irefTrim = config.getint("param","iref_trimming")

- nbits = config.getint("param","nbits")
- gain = config.getint("param","gain")
- rp = config.getint("param","vrp")

params = [irefTrim, nbits, gain, rp]

sensor = UBTEMP(dhePrefix=dhe, asicpair=asicpair, params=params, verbose=False) print sensor.updateTemperature()

DHPT - Signal Integrity PXD9-EMCM2 modules

Leonard Germic, B. Paschen, F. Lütticke, T. Hemperek, C. Marinas, H. Krüger and Norbert Wermes

21st International Workshop on DEPFET Detectors and Applications

28th – 31th May 2017 Ringberg Castle

Three Infiniband connectors Kapton + 2m Infiniband + 1m Infiniband

Three Infiniband connector Kapton + 2m Infiniband + 1m Infiniband

- For proper operation AC coupling capacitors have been exchanged by 0Ω bridges (GCK, Trigger)
- Only DHP1 has been probed

UNIVERSITÄT BONN

- Signal Integrity measurements on PXD9-EMCM2 (W29-OB1)
 - AWG24, HS link scan 0.1s

- Signal Integrity measurements on PXD9-EMCM2 (W29-OB1)
 - AWG24, HS link scan 0.1s

UNIVERSITÄT BONN

- Signal Integrity measurements on PXD9-EMCM2 (W29-OB1)
 - AWG24, HS link scan 5min

One cause of <u>Data Dependent Jitter</u> (included in deterministic jitter)

– Inter-symbol interference

UNIVERSITÄT BONN

One cause of <u>Data Dependent Jitter</u> (included in deterministic jitter)

Inter-symbol interference

UNIVERSITÄT BONN

One cause of <u>Data Dependent Jitter</u> (included in deterministic jitter)

- Inter-symbol interference

One cause of <u>Data Dependent Jitter</u> (included in deterministic jitter)

Inter-symbol interference (ISI)

Cure ISI with limiting bandwidth (low frequency suppression)

8b/10b encoding (max. 4/5bits of equal value)

Example Simulation:					
Jitter Deter. [ps] 7 bit LFSR	Jitter Deter. [ps] Data 8b/10b				
~260	~180				

One cause of <u>Data Dependent Jitter</u> (included in deterministic jitter)

Inter-symbol interference (ISI)

Cure ISI with limiting bandwidth (low frequency suppression)

8b/10b encoding (max. 4/5bits of equal value)

Example <mark>Simulation</mark> :				
Jitter Deter. [ps] 7 bit LFSR	Jitter Deter. [ps] Data 8b/10b			
~260	~180			

Additional cause: Asymmetric edges (rise and fall times)

UNIVERSITÄT BONN

One cause of asymmetric edges (included in deterministic jitter)

B, bd dly=0	Vertical Opening [mV]	Jitter Deter. [ps]	Jitter Rand. [ps]
200,100	225	263	24
200,150	232	234	21
255,100	225	268	21
255,150	228	224	18
225,125 Optimal	233	238	20

B, bd dly=0	Vertical Opening [mV]	Jitter Deter. [ps]	Jitter Rand. [ps]
200,100	174	358	20
200,150	182	315	21
255,100	171	309	21
255,150	184	326	20
225,125	184	339	21
255,255 optimal	200	273	20

We conclude...

- Eye opening of PDPP_L2BWD-03 (AWG 24) ~ 230mV compared to
 Eye opening of PDPP_L2BWD-04 (AWG 28) ~ 200mV
- High jitter though
 - Further investigation needed

Summary

What have we learned so far?

- Signal integrity highly depends on system
 - Hybrid 5 (Infiniband only) vs EMCM2 (Kapton+PP+Infiniband)
 - Impedance discontinuities has a high impact
 - \rightarrow Quality control of PP (soldering, etc.)
- Additional optimization
 - Understanding the source of jitter (GCK, DHPT PLL, ...)
 - Bit Error Rate for region of interest
 - HS link scan does not give sufficient information
 - Increase statistics
 - Probe all DHP HS links
 - Test multiple PP assemblies

Thank you

Backup

- Sanity check
- Power consumption, visual inspection (mechanical damage)
- Internal chip functionality: DHP digital logic
- JTAG registers (programmability of DHP)
- Memory qualification (SRAM testing)
 - Raw data mem., Offset data mem. And Sw data mem.
- Digital logic:
 - Data processing
 - Common mode (CM) correction
- Test data with simulated CM
- Trigger zero-suppressed data
- .Interchip communication: DHP<->DCD, DHP->Switcher and DHP<->DHE
- I/O en-/disabling
- Data transmission;
- DHP->DCD, DHP<-DCD, DHP->Switcher and DHP->DHE, DHP<-DHE
- Test pattern generation and r/w by FPGA based system
- Signal integrity, i.e. Bit Error Rate

