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Motivation
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Independence of species of incoming hadrons



Motivation

Deep inelasting scattering: Universal behaviour

Independence of species of incoming hadrons

Gauge/gravity duality:

Map between strongly coupled quantum gauge theories and (classical) gravity

Useful approach for identifying universal behaviour
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Deep-inelastic scattering

Q2 = −q2
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In proton rest frame:

l =
~c

∆E

∆E: Change in energy of the photon as it fluctuates into quarks and gluons

For Q2 = −q2 � m2
parton

∆E ' Q2

2ν
, l ' 2ν~c

Q2
' ~c
xMproton

ν: Photon energy

Cross section is expected to increase with coherence length since there is more
time for the photon to develop structure.

4



Caldwell New J.Phys. 18 (2016) 073019
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Dependence of cross section on coherence length

At large l, cross-sections are expected to merge and level off
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Dependence of cross section on coherence length

At large l, cross-sections are expected to merge and level off

Example for universal behaviour

Description within gauge/gravity duality?

Brief review of gauge/gravity duality

Examples for universal behaviour from gauge/gravity duality
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Gauge/gravity duality

Duality:



Gauge/gravity duality

Duality:

Gauge/gravity duality:

Quantum field theory at strong coupling

⇔ Gravity theory at weak coupling
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AdS/CFT Correspondence

(Maldacena 1997, AdS: Anti-de Sitter space, CFT: conformal field theory)

Best understood example of gauge/gravity duality:

Conformal field theory in four dimensions
⇔ Supergravity theory on AdS5 × S5

Arises from String theory in a particular low-energy limit:

’t Hooft coupling λ = g2N large and fixed, N →∞

4d field theory lives at the boundary of 5d Anti-de Sitter space
(N = 4 Super Yang-Mills)
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AdS/CFT correspondence: String theory origin
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Gauge/gravity duality

Generalizations of AdS/CFT that break conformal and supersymmetry

Realize confinement

Dual gravity theories more involved

Examples: Hard wall, soft wall (dilaton), consistent 10d gravity solutions
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Gauge/gravity duality and universal predictions

A particular strength of gauge/gravity duality is to provide universal predictions:

Examples:

Shear viscosity

Pomeron: Unified description of soft (Regge) and hard (BFKL) pomeron

Froissart bound
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Example: Shear viscosity over entropy density

Shear viscosity over entropy density

η

s
=

1

4π

~
kB

Kovtun, Son, Starinets PRL 2004

Universal lower bound (does not depend on details of theory)

Bound satisfied by the most strongly coupled systems (g →∞)

Experimentally observed for quark-gluon plasma at RHIC, ALICE
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Example: Shear viscosity over entropy density

Hydrodynamics: Long wavelength, low-frequency fluctuations in fluids

Expand physical quantities in derivatives of the relativistic fluid velocity:
uµ, ∇u, ∇∇u . . .

Consider energy-momentum tensor Tµν

Contains information about energy density, energy and momentum flux

Hydrodynamic expansion to first order in derivatives:

Tµν(x) = T
(0)
µν (x) + T

(1)
µν (x) + . . .

T
(0)
µν (x) = (ε+ P )uµuν − Pgµν , T (1)

µν = η
(
∂µuν + ∂νuµ − 2

3gµν∂λu
λ
)
+ ζgµν∂λu

λ

η shear viscosity, ζ bulk viscosity
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Holographic calculation of shear viscosity

Energy-momentum tensor Tµν dual to graviton gµν

Calculate correlation function 〈Txy(x1)Txy(x2)〉 from propagation through
AdS black hole space

Shear viscosity is obtained from Kubo formula:

η = −lim
1

ω
ImGRxy,xy(ω)

Shear viscosity η = πN2T 3/8, Entropy density s = π2N2T 3/2

η

s
=

1

4π

~
kB
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Pomeron in AdS/CFT

Brower, Polchinski, Strassler, Tan JHEP 0712 (2007) 005
Pomeron:

Coherent color-singlet excitation in high-energy hadronic scattering

At large s, small t, large N

it contributes the leading singularity in the angular momentum plane

Pomeron in AdS/CFT: (large N )

Calculation of field theory amplitude from string amplitude in ten-dimensional
AdS5 × S5 space with cut-off

Four-dimensional scattering given by coherent sum over scattering in the six
transverse dimensions

15



Hard scattering

Holographic encoding of gauge theory physics:

Low energy states at small r, high energy states at large r (near boundary)

Warped space:

ds
2
=
r2

L2
ηµνdx

µ
dx

ν
+
L2

r2
dr

2
+ L

2
ds

2
X

pµ =
r

L
p̃µ

A(s, t) ∝ sα(t,r)

pµ conserved momentum, corresponding to invariance under translation of xµ

p̃µ momentum in local inertial coordinates for momenta localized at r
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Pomeron in gauge/gravity duality

At large s, highest trajectory will dominate:

t positive: r small: soft (Regge) pomeron, properties determined by confining
dynamics: glueball

t negative: r large: hard (BFKL) pomeron, two-gluon perturbative small object
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Recent refinements

Ballon-Bayona, R. Quevedo, Costa
1704.08280
Exchange of higher-spin fields in the
graviton Regge trajectory
dual to glueball states of twist two

First four pomeron trajectories are
considered; fit to HERA data

x < 0.01

0.1 < Q2 < 400 in GeV2

χ2
d. o. f. = 1.7
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Example: Froissart bound

High-energy behaviour of total cross-sections in two-particle scattering

Heisenberg 1952:

A target hadron is surrounded by a pion field with energy density ∝ e−mπr

Inelastic processes will occur when the collision is close enough to locally yield
enough energy to create a pion pair

⇒
σ ∝ 1

m2
π

ln2 E

mπ
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Example: Froissart bound

Froissart 1961:

At high energies, the total cross-section for two-particle scattering (protons) has
an upper bound

σ ∝ ln2 s

s0

s centre-of-mass energy, s0 energy scale

General argument based on unitarity of S matrix and
analyticity properties of the scattering amplitude



Example: Froissart bound

Froissart 1961:

At high energies, the total cross-section for two-particle scattering (protons) has
an upper bound

σ ∝ ln2 s

s0

s centre-of-mass energy, s0 energy scale

General argument based on unitarity of S matrix and
analyticity properties of the scattering amplitude

QCD considerations link the Froissart bound at high energies to the dynamics
of ultra-soft gluons (strongly coupled)
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Example: Froissart bound in gauge/gravity duality

Giddings Phys.Rev. D67 (2003) 126001; Kang, Nastase Phys.Rev. D72 (2005) 106003

AdS metric with IR cutoff (‘hard wall’), point mass m is placed on this IR wall

This creates perturbations of the AdS space which may lead to the formation of
a black hole in AdS space

Geometrical cross section of this black hole⇔
maximum possible scattering cross section in the field theory

σ ≤ σBH = πr2h ∝ ln2 E

E0
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Subleading corrections to Froissart bound from AdS black holes

Diez, Godbole, SInha, Phys.Lett. B746 (2015) 285

Subleading corrections ∝ − ln(s/s0) and ∝ ln s/s0 ln ln s/s0,
from higher curvature corrections

improve fits to cosmic ray and LHC data
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Subleading corrections to Froissart bound from AdS black holes

Diez, Godbole, SInha, Phys.Lett. B746 (2015) 285
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Total γp cross section

Caldwell, Wing Eur.Phys.J. C76 (2016) 463
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Coherence length dependence of cross section

First approach within gauge/gravity duality

Find argument based on black hole cross section
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Conclusions and outlook

Gauge/gravity duality provides a new approach to universality
at strong coupling

Examples:Deep inelastic scattering, pomeron, Froissart bound

Techniques available to investigate saturation of σγp cross section at very
high energies

Much more to explore!
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