

What the HERA data tell us about low-x physics

I. Abt, A. Cooper-Sarkar, B. Foster, V. Myronenko, K. Wichmann, M. Wing

Prospects for a VHE eP and eA collider Max-Plank-Institut für Physik Munich, Germany 2017

The HERA collider and the experiments

Location: Hamburg, Germany Research operation: 1992 - 2007 Length: 6336 m Proton and electron (positron) beams 4 experimental halls 2 experiments on colliding beams $E_P = 920(820, 575, 460)GeV$ $E_e = 27.5 GeV$ $\sqrt{s} = 318(300, 252, 225)GeV$

~0.5 fb⁻¹ of DIS data collected by each experiment

HERA data

Collected data spans: 6 orders of magnitude in x_{Bj} 6 orders of magnitude in Q²

Core of any PDF extraction

Basis for probing QCD and EW physics

Unique data for testing low-x phenomenological models

Deep-Inelastic scattering at HERA

DIS in various reactions

CC e[±]p: Sensitive to quark-flavour decomposition.

NC e⁺p:

Probe valence-quark distribution (F₂, xF₃)

Gluon content of the proton (scaling violation)

NC e⁺p DIS data

Covers <u>widest</u> cinematic range

Available in <u>several √s</u>

NCe+p@($\sqrt{s} = 318 \text{ GeV}$):

Probes the lowest x_{Bj} and Q^2 Lowest- x_{Bj} data is ~16 years old!

DIS data for PDF extraction

Basic idea: fit QCD predictions to exp. data $\sigma_{A\to C}(q,p) = \Sigma_a \int_{-\infty}^{1} d\xi f^a(\xi,\mu) \sigma_{a\to C}(q,\xi,p,\mu,\alpha_s)$

DIS data constrains the PDFs:

HERAPDF - based on HERA only Other PDFs - use HERA as a basis

PDFs at low x

Perturbative region can not be extended to very low Q²

Low $Q^2 \leftrightarrow \text{low } x_{Bi}$

HERA data provides PDF info only down to $x_{Bi} \simeq 10^{-5}$

Everything below - pure extrapolation

PDFs at low x

Additional low-x data helps understanding proton structure!

Any potential input from VHEeP?

V. Myronenko | What the HERA data tell us about low-x | Prospects for a VHE eP and eA collider | 2.06.2017

Eur.Phys.J. C75 (2015) no.8, 396, [arXiv:1503.04581]

Low-Q² data and pQCD

Low x_{Bj} data and pQCD

Data at $Q^2 = [3.5, 15] GeV^2$ cause ~1/3 of the excess in χ^2 / n.d.f Rest - fluctuations overall full HERA kinematic region

A possible solution, a higher-twist correction, was studied...

Higher-twist correction

The problem might be in absence of higher-twist corrections in the evolution equations

May be visualised as gluon leaders with recombining gluons

Eur.Phys.J. C17 (2000) 121-128, [hep-ph/0003042]

Introduce simple twist-4 correction factor to each of st. functions

Higher-twist terms are expected to contribute to $F_{L...}$

 $F_L \frac{4\pi^2 \alpha}{O^2(1-r)} = \sigma_L$

$$F_{L}^{HT} = F_{L}^{DGLAP} \left(1 + \frac{Q^{2}}{Q^{2}}\right)$$

$$F_2 \frac{4\pi^2 \alpha}{Q^2 (1-x)} = \sigma_T + \sigma_L$$

V. Myronenko | What the HERA data tell us about low-x | Prospects for a VHE eP and eA collider | 2.06.2017 12/31

...and cancel for F₂

HHT-prediction components

HHT predictions seem to be doing a very good job! some details?

 F_2 is extracted from σ_r :

$$F_2^{extr} = F_2^{pred} \frac{\sigma_r^{meas}}{\sigma_r^{pred}}$$

The description is reasonably good...

Warning: a model-dependent extraction!

HHT-prediction components

16/31

HHT-prediction components

17/31

What if I told you

there is physics below 3.5 GeV²

NC e+p from different angles

$$F_2^{extr} = F_2^{pred} rac{\sigma_r^{meas}}{\sigma_r^{pred}}$$
 will be used further

Predictions for extraction: $Q \ge 3.5 \text{ GeV2} \rightarrow \text{HHT}$; $Q2 < 3.5 \text{ GeV2} \rightarrow \text{BKS}$

pQCD breaks at low Q2 but nature does not!

ALLM: full data description

ALLM model:

23-parameter ansatz

contains Pomeron and Reggeon exchange contributions

$$F_2 = \frac{Q^2}{Q^2 + m_0^2} (F_2^{IP} + F_2^{IR})$$

$$\frac{\chi^2}{n.d.f} \approx 1.06$$

ALLM: full data description

ALLM97 used only early HERA data

HHT-ALLM recent update with full HERA data

HHT-ALLM describes data remarkably well!

$$\frac{\chi^2}{n.d.f} \approx 1.06$$

Note the **smooth trend** established by the data!

ALLM: full data description

Non-trivial structures observed at **Fixed Target** at high x

Successfully described by ALLM97

$$W^2 = Q^2(\frac{1}{x_{Bj}} - 1) + m_P$$

ALLM extrapolation

ALLM extrapolation

REGGE fit

REGGE fit

Regge diverges from data as $x_{Bj} \rightarrow 0$

Lacking data at high W (low x_{Bj})!

$$W^2 = Q^2(\frac{1}{x_{Bj}} - 1) + m_P$$

Characteristics of F₂

Scaling violation in DIS

When pQCD meets Regge

Gap between pQCD and Regge grows as $x_{Bj} \rightarrow 0$

Does nature have any preferences?..

...and, whose side are you on?

Side?! I am on nobody's side, because nobody is on my side!

Backup ...not necessarily useful