> Max Warkentin Supervisor: Viatcheslav Mukhanov

Ludwig Maximilian University of Munich

37th IMPRS Workshop Munich, 13 March 2017

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

What is it? What is dark energy?

Dark energy

Expansion of the universe is accelerating

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Cosmological constant?
- Dynamical model? (Quintessence)
- k-essence? (kinetic quintessence) (Armendariz-Picon, Mukhanov, Steinhardt, 2001)

Kinetic Gravity Braiding

 "Imperfect Dark Energy from Kinetic Gravity Braiding" (Deffayet, Pujolàs, Sawicki, Vikman, 2010)

$$S = \int_{\mathcal{M}} d^4 x \sqrt{-g} \left[\frac{1}{2} R + K(\phi, X) + G(\phi, X) \Box \phi \right]$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

(with $X = -\frac{1}{2}g^{\mu\nu}\nabla_{\mu}\phi\nabla_{\nu}\phi$)

Kinetic Gravity Braiding

 "Imperfect Dark Energy from Kinetic Gravity Braiding" (Deffayet, Pujolàs, Sawicki, Vikman, 2010)

$$S = \int_{\mathcal{M}} d^4 x \sqrt{-g} \left[\frac{1}{2} R + K(\phi, X) + \frac{G(\phi, X) \Box \phi}{\varphi} \right]$$

(with $X = -\frac{1}{2}g^{\mu\nu}\nabla_{\mu}\phi\nabla_{\nu}\phi$)

- ► Crossing of boundary w = -1 (cosmological constant) without classical instabilities (phantom energy)
- Violation of null energy condition by a physical plausible theory

Kinetic Gravity Braiding

 "Imperfect Dark Energy from Kinetic Gravity Braiding" (Deffayet, Pujolàs, Sawicki, Vikman, 2010)

$$S = \int_{\mathcal{M}} d^4 x \sqrt{-g} \left[\frac{1}{2} R + K(\phi, X) + \frac{G(\phi, X) \Box \phi}{\varphi} \right]$$

(with $X = -\frac{1}{2}g^{\mu\nu}\nabla_{\mu}\phi\nabla_{\nu}\phi$)

- ► Crossing of boundary w = −1 (cosmological constant) without classical instabilities (phantom energy)
- Violation of null energy condition by a physical plausible theory
- Usually, $\ddot{\phi}$ in the action leads to $\overleftarrow{\phi}$ in equation of motion (eom)
 - \rightarrow Hamiltonian not bounded from below
- In "kinetic gravity braiding theories" (KGB) : mixing of 2nd derivatives on the level of eom's

Total energy?

Boundary Terms

- 2nd derivative in the action is problematic
- Variation of the normal derivative of ϕ ?
- Similar case in the General Relativity (GR) action
- For total energy of system: useful to perform calculations with boundaries and later send them to infinity

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Objective

Use appropriate boundary terms and derive the contribution to the total energy coming from the scalar sector of a system with Kinetic Gravity Braiding

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Total energy is an ambigious concept in GR
- Action is invariant under arbitrary coordinate transformations

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

$$S_{\rm G} = rac{1}{2} \int\limits_{\mathcal{M}} {
m d}^4 x \sqrt{-g} R + \oint\limits_{\partial \mathcal{M}} {
m d}^3 y \sqrt{|h|} \mathcal{K}$$

(with trace of extrinsic curvature \mathcal{K})

 \blacktriangleright No global Lorentz frame \rightarrow no global time

(ロ)、(型)、(E)、(E)、 E) の(()

Foliation of spacetime

Foliation of spacetime

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Foliation of spacetime

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 $t^{lpha} = Nu^{lpha} + N^{a}e^{lpha}_{a}$, $a \in \{1, 2, 3\}$ (with basis e^{lpha}_{a} and unit normal u^{lpha} on Σ_{t})

Foliation of spacetime

$$t^{lpha} = \mathit{Nu}^{lpha} + \mathit{N}^{a} e^{lpha}_{a} \;, \qquad a \in \{1, 2, 3\}$$

(with basis e_a^{α} and unit normal u^{α} on Σ_t)

 g^{μν} is split into induced metric h_{ab} intrinsic to the hypersurface and into 4 foliation-dependent functions time lapse N and time shift N^a

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

ADM mass

 If spacetime is asymptotically flat, we can choose boundary B_t at infinity to coincide with a 2-sphere of fixed Minkowski-time

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• And we set N = 1 and $N^a = 0$

ADM mass

 If spacetime is asymptotically flat, we can choose boundary B_t at infinity to coincide with a 2-sphere of fixed Minkowski-time

• And we set N = 1 and $N^a = 0$

$$M_{\mathrm{ADM}} = -\lim_{\mathcal{B}_t o \infty} \oint\limits_{\mathcal{B}_t} \mathrm{d}^2 heta \sqrt{\sigma} \left(oldsymbol{k} - oldsymbol{k}_0
ight)$$

- k (k₀) is the trace of the extrinsic curvature of B_t embedded in Σ_t (spatial slice of Minkowski spacetime)
- *M*_{ADM} contains entire information about the interior (gravitational energy of spacetime and matter energy)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Hamiltonian in Kinetic Gravity Braiding

$$S = S_{\rm G} + \int_{\mathcal{M}} \mathrm{d}^4 x \sqrt{-g} \left[\mathcal{K}(X) + \frac{\mathcal{G}(X) \Box \phi}{\partial \mathcal{M}} \right] - \oint_{\partial \mathcal{M}} \mathrm{d}^3 y \sqrt{|h|} F$$

 Boundary term has been recently derived for a generic class of scalar-tensor-theories (Padilla, Sivanesan, 2012)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Hamiltonian in Kinetic Gravity Braiding

$$S = S_{\rm G} + \int_{\mathcal{M}} \mathrm{d}^4 x \sqrt{-g} \left[\mathcal{K}(X) + \frac{\mathcal{G}(X) \Box \phi}{\partial \mathcal{M}} \right] - \oint_{\partial \mathcal{M}} \mathrm{d}^3 y \sqrt{|h|} F$$

 Boundary term has been recently derived for a generic class of scalar-tensor-theories (Padilla, Sivanesan, 2012)

$$E_{ADM} \equiv - \lim_{\mathcal{B}_t \to \infty} \oint_{\mathcal{B}_t} d^2 \theta \sqrt{\sigma} \left(k - k_0 + G \phi_l - F^{\mathcal{B}} + F^{\mathcal{B}}_{U} \phi_u^2 - F^{\Sigma}_{Y} \phi_u \phi_l \right)$$

(with $\phi_u \equiv \nabla_\mu \phi u^\mu$, $\phi_I \equiv \nabla_\mu \phi I^\mu$ and scalar functions F^B , F^B_U , F^{Σ}_Y coming from the boundary)

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ ()

- Divergent for a generic scalar field configuration
- Check, if it is possible to find a configuration for which the expression for ADM energy is both applicable and finite!

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Quasilocal Energy (Brown, York, 1993)

Ansatz: static, spherically symmetric metric and scalar field

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Ansatz: static, spherically symmetric metric and scalar field

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$\rightarrow \frac{K \sim \frac{2}{3} (-X)^{3/2}}{G \sim 2\mu \sqrt{-X}}$$
 for $r \rightarrow \infty$
$$\partial_r \phi \sim -\frac{6\mu}{r} - \frac{6\mu m}{r^2}$$
 for $r \rightarrow \infty$
(with $\mu < 0$, $[\mu] = [mass]^{1/3}$)

m is just the name of integration constant

$$ds^{2} \approx -\left[1 - \frac{2m}{r} - \frac{\mu^{3}m \cdot const}{r^{2}}\right] dt^{2} + \left[1 + \frac{2m}{r} + \frac{4m^{2} + \mu^{3}m \cdot const}{r^{2}}\right] dr^{2} + r^{2}d\Omega^{2} \quad \text{for} \quad r \to \infty$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

$$ds^{2} \approx -\left[1 - \frac{2m}{r} - \frac{\mu^{3}m \cdot const}{r^{2}}\right] dt^{2} + \left[1 + \frac{2m}{r} + \frac{4m^{2} + \mu^{3}m \cdot const}{r^{2}}\right] dr^{2} + r^{2}d\Omega^{2} \quad \text{for} \quad r \to \infty$$

$$E_{ADM} = m + 72\sqrt{2}\pi|\mu|^3$$
$$> m$$

In theories with KGB it is possible for scalar to have contribution to total energy without contributing to leading order in metric

Thank You

Questions?

Quasilocal Energy

Quasilocal Energy (Brown, York, 1993)

$$\lim_{\mathcal{B}_t \to \infty} E_{\text{QL}} = - \lim_{\mathcal{B}_t \to \infty} \oint_{\mathcal{B}_t} d^2 \theta \sqrt{\sigma} \left(k - k_0 + G \phi_I - F^{\mathcal{B}} + F^{\mathcal{B}}_u \phi^2_u - F^{\boldsymbol{\Sigma}}_{\boldsymbol{Y}} \phi_{\boldsymbol{U}} \phi_{\boldsymbol{U}} \right)$$

 Differs from E_{ADM}, because time lapse function does not appear linearly in the boundary action for KGB

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる