Breakdown of Perturbation Theory in Multi-Photon-Annihilation Processes

Lukas Eisemann¹ (Master thesis supervised by Gia Dvali^{1,2,3})

 1 LMU Munich , ^2Max Planck Institute for Physics, ^3New York University

March 9, 2017

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ○ ○ ○

Introduction

Figure : Pair-creation in electric field **E** of capacitor plates

Common theoretical treatment Electric field as (classical) **background E**_B e^+e^- -creation in electric fields Long-standing prediction **Rate** for e.g. **E** = const: $\Gamma_{pair}(E) \sim e^{-\frac{m^2}{gE}}$

Relevance in physics

- Prototype for particle production in bosonic backgrounds
- Accessible in lab

\rightarrow Idea:

Quantum-resolution of E_B

e.g. in laser: $n\gamma \rightarrow e^+e^-$ Coherent State

Overview Calculations

Figure : Experimental setup: 2 colliding laser beams, monochromatic

Figure : Leading order perturbation theory terms

- $\langle N \rangle$: mean occupation
 - ω : photon energy
 - *n*: number of photons annihilated

Quantities computed: $\Gamma_{tree}(n_1, n_2 \rightarrow e^+e^-)$

Treatment as **scattering** Photons on-shell Collinearity-effects negligible

> ・ロト ・ (日) ・ (王) ・ 王) ・ 王 ・ つへで 2 / 10

Loss of Perturbative Unitarity

Generic to all processes $n_1, n_2 \rightarrow e^+e^-$:

$$\Gamma_{tree} \sim n! \left(1 + \mathcal{O}\left(\frac{1}{n}\right)\right)$$

- For *n* sufficiently large, perturbation theory breaks down for all parameter-values α, m, ω, V.
- ► Onset of unlimited growth: $n_* \sim \frac{1}{\alpha} V m^2 \omega$ α : coupling V: volume m: electron mass
 - ▶ 2nd case of lost tree-level unitarity in **weakly** coupled regime of SM besides known case of Multi-Higgs/-W production¹ $q\overline{q} \rightarrow nh + mV$.

Relating to Experiment: Coherent State

Consider initial coherent superposition

$$|z
angle \equiv \exp\left(\sum_{s}\int_{k}z(\mathbf{k},s)\hat{a}^{\dagger}(\mathbf{k},s)+h.c.
ight)|0
angle$$

with spectrum

$$z(\mathbf{k},s) = \sqrt{\langle N \rangle} \left(\delta^3 \left(\mathbf{k} - \omega \mathbf{e}_z \right) + \delta^3 \left(\mathbf{k} + \omega \mathbf{e}_z \right) \right) \delta_{s+}.$$

 \Rightarrow Associated mean electric field:

$$\langle \hat{\mathbf{E}}
angle = \sqrt{\frac{\langle \mathbf{N}
angle \omega}{V}} \cos(\omega z) \begin{pmatrix} \cos(\omega t) \\ \sin(\omega t) \\ 0 \end{pmatrix}$$

Rate from Coherent State

Figure : Coherent state acts like a background field

 e^+e^- -creation rate from coherent state $\Gamma_{coh} = f(\omega, \langle E \rangle)$ is weighted sum of individual rates:

$$\Gamma_{coh} \equiv \sum_{n}^{\infty} \left(\sum_{n_1=1}^{n-1} \frac{\langle N \rangle^n}{n_1! n_2!} \Gamma_{tree} \left(n_1, n_2 \to e^+ e^- \right) \right) \equiv \sum_{n}^{\infty} a_n \alpha^n$$

Rate from Coherent State

Figure : Coherent state acts like a background field

 e^+e^- -creation rate from coherent state $\Gamma_{coh} = f(\omega, \langle E \rangle)$ is weighted sum of individual rates:

$$\Gamma_{coh} \equiv \sum_{n}^{\infty} \left(\sum_{n_1=1}^{n-1} \frac{\langle N \rangle^n}{\underbrace{n_1! n_2!}_{\sim n! - 1}} \underbrace{\Gamma_{tree}\left(n_1, n_2 \to e^+ e^-\right)}_{\sim n!} \right) \equiv \sum_{n}^{\infty} a_n \alpha^n$$

Transition with Parameters

n-scaling of series terms in $\Gamma_{coh} \equiv \sum_{n=1}^{\infty} a_n \alpha^n$:

$$a_n \alpha^n \sim r^n \left(1 + \mathcal{O}\left(1/n\right)\right), \qquad r \sim \frac{\alpha \langle N \rangle}{V m^2 \omega} \sim \left(\frac{g \langle E \rangle}{m \omega}\right)^2 \equiv \gamma^2$$

 \Rightarrow **Perturbativity** depends on values of parameters: $\gamma \div 1$. $a_n \alpha^n / [\text{cm}^{-3} \text{s}^{-1}]$ 10400 $\cdot \quad \gamma \gg 1$ $\cdot \quad \gamma = 1$ Plot parameters: ► $2m/\omega = 1000$ $\cdot \gamma \ll 1$ \blacktriangleright $\langle E \rangle$: 3 different 10⁻³⁶⁰⁰ values 10^{-5600} n 1000 1100 1200 Figure : Scaling of series terms $a_n \alpha^n$ with $n \rightarrow \langle n \rangle \langle n \rangle \langle n \rangle$

Comparison Background-Field Result

For **background**-field (equal to above mean field $\langle \hat{E} \rangle$ of coherent state in anti-nodes)

$$\mathbf{E}_B = E \begin{pmatrix} \cos(\Omega t) \\ \sin(\Omega t) \\ 0 \end{pmatrix},$$

non-perturbative result² for rate $\Gamma_B(E, \Omega)$ is:

$$\Gamma_B(E,\Omega) \sim (gE)^2 \begin{cases} e^{-\frac{m^2}{gE}} & \text{for} \quad \gamma \gg 1\\ \left(\frac{gE}{m\Omega}\right)^{2\frac{2m}{\Omega}} & \text{for} \quad \gamma \ll 1, \end{cases} \qquad \gamma \equiv \frac{gE}{m\Omega}$$

interpolates between multi-photon- and non-perturbative regime. \to This transition qualitatively captured by $\Gamma_{coh}.$

²H.Gies et al. (2014).

Quantum Corrections?

Figure : Terms entering background-field treatment

No Quantum corrections from **coherent** state

 Coherent superposition generates same weights as background

・ロト ・回ト ・ヨト ・ヨト

• $|i\rangle \neq |z\rangle$ will give Quantum corrections

Truncations different

- $n' \neq 0$: Stimulated-emission-type processes
- Our truncation: n' = 0

Summary and Outlook

Loss of perturbative unitarity

for elementary processes $n_1\gamma$, $n_2\gamma \rightarrow e^+e^-$ Constitutes 2nd occurrence in **weakly** coupled regime of SM besides known case $q\overline{q} \rightarrow nh + mV$

Coherent state

Coherent state generating same terms as background-field

▲□▶ ▲□▶ ▲目▶ ▲目▶ - 目 - 釣べ⊙

Smaller truncation able to capture qualitatively transition between multi-photon- and NP regime

Quantum Corrections

Calculation of $\Gamma_{tree}(n_1, n_2 \rightarrow e^+e^-)$ provides basis for finding Quantum corrections at **tree**-level: Arising from **initial state's deviation** from coherent state

Backup: Quantitative Comparison

Figure : Scaling of e^+e^- -creation rate Γ with field strength E (in units of $E_{cr} \equiv m^2/g$)