Characterization of a Segmented n-Type Broad Energy Germanium Detector

Martin Schuster

Max-Planck Institute for Physics

March 13, 2017

<ロト <四ト <注入 <注下 <注下 <

Physics Motivation

Experimental Setup

Detector Characteristics

Summary & Outlook

Martin Schuster

Physics Motivation

Experimental Setup

Detector Characteristics

Summary & Outlook

(中) (문) (문) (문) (문)

Physics Motivation: $0\nu\beta\beta$ Decay

Could provide information on:

- Nature of the neutrino: Dirac or Majorana?
- Inverted or Normal Hierarchy
- Possibly hints on absolute mass scale from T_{1/2}

Martin Schuster

Why Germanium?

- ▶ ⁷⁶Ge is a candidate for $0\nu\beta\beta$ and Ge is a semiconductor
- ► Can act as source and detector simultaneously → high detection efficiency
- Naturally good energy resolution
- Currently employed in experiments like GERDA and MAJORANA
- LEGEND collaboration is forming: Ton-scale germanium experiment

Martin Schuster

Physics Motivation

Experimental Setup

Detector Characteristics

Summary & Outlook

(中) (문) (문) (문) (문)

Summary & Outlook

The Segmented Broad Energy Germanium Detector

Properties

- Special electric field due to point contact: Favorable for Pulse-Shape Analysis
- Segmentation provides
 - Information on *φ* location of energy depositions
 - Complimentary background rejection

(a)

Martin Schuster

Weighting Potential

Martin Schuster

Example Pulse

Martin Schuster

Characterization of a Segmented n-Type Broad Energy Germanium Detector

ax-Planck Institute for Physics

Physics Motivation

Experimental Setup

Detector Characteristics

Summary & Outlook

(中) (문) (문) (문) (문)

.

Crystal Axes Determination

- Slow and fast crystal axes influence the drift-path and speed of the charge carriers
- The dependence of t_{5-95} on ϕ is expected to be sinusoidal:

$$t_{5-95} = C + a \cdot \sin\left[\frac{2\pi}{90}\left(\phi + \phi_{offset}
ight)
ight]$$

The parameters C, a and ϕ_{offset} were fitted to the data

Martin Schuster

ax-Planck Institute for Physic

2

/lax-Planck Institute for Physic

ax-Planck Institute for Physic

2

Localizing ϕ *Position* using Mirror Pulses

Martin Schuster

/lax-Planck Institute for Physic

Characterization of a Segmented n-Type Broad Energy Germanium Detector

/lax-Planck Institute for Physics

2

lax-Planck Institute for Physic

2

Passivation Layer Studies

Martin Schuster

Characterization of a Segmented n-Type Broad Energy Germanium Detector

≣ >

- Both segment 3 and 4 are collecting
- Truncated mirror pulses: Indication for charge trapping
- Increasing effect for smaller radii

(a)

lax-Planck Institute for Physics

Martin Schuster

Near Surface Effects: Distorted Field Lines

- Drift paths are bent towards the surface, where the electric field is very weak
- > At surface, the charge-drift slows down significantly
- This gives rise to the observed phenomena via two mechanics:
 - Incomplete charge collection: Charges cease to contribute to the pulse
 - Strongly delayed pulses: Pulses don't reach their amplitude during DAQ-window

Physics Motivation

Experimental Setup

Detector Characteristics

Summary & Outlook

(中) (문) (문) (문) (문)

Summary and Results

- Prototype detector, combining the point contact layout, which is favorable for PSA with a moderate segmentation.
- Localization of the crystal axes, despite tilted installation: Good agreement between top-scans and side-scans
- Reconstructing the *φ*-position using mirror pulses of non-collecting segments: Proven to be feasible
- Indication of distorted drift paths for low energy events beneath the passivated area
 The effects show a significant r dependence, yet they are independent on φ

A (1) > A (2) > A

Outlook

- The detector has been moved to new, electrically cooled cryostat
- Measurements of temperature dependence of passivation layer effects and drift times in general
- Expanding and refining the event position reconstruction, including Monte-Carlo based pulse-shape libraries
- Further studies on the effect of the crystal axes

< (T) > <

글 > - < 글 >

Martin Schuster

Thank you for your attention!

<ロ> <四> <四> <日> <日> <日</p>

lax-Planck Institute for Physics

э

Martin Schuster

BACKUP

Martin Schuster

Characterization of a Segmented n-Type Broad Energy Germanium Detector

Aax-Planck Institute for Physics

2

2

Martin Schuster

2

lax-Planck Institute for Physic

Summary & Outlook

Multi-Site- vs. Single-Site-Event Discrimination

Martin Schuster

Characterization of a Segmented n-Type Broad Energy Germanium Detector

2

・ロト ・回ト ・ヨト

A/E Method

Martin Schuster

Aax-Planck Institute for Physic

2

2

Martin Schuster

2

Segmentation Cut

Martin Schuster

Characterization of a Segmented n-Type Broad Energy Germanium Detector

ax-Planck Institute for Physics

2

Summary & Outlook

Example Core Pulse as provided by the ADC

lax-Planck Institute for Physic

э

Fixed Window Method for Pulse Amplitude Determination

Martin Schuster

.

.

The matrix c_{ij}^* links the true energy E_i^{true} and the measured pulse amplitudes M_i :

$$(E_0^{true} \dots E_4^{true}) \cdot \begin{pmatrix} c_{00}^* \dots c_{04}^* \\ \vdots & \ddots & \vdots \\ c_{40}^* \dots & c_{44}^* \end{pmatrix} = (M_0 \dots M_4)$$

 E_i^{true} can be determined using the inverse matrix $c_{ij}^{*^{-1}}$:

$$(E_0^{true} \ldots E_4^{true}) = (M_0 \ldots M_4) \cdot \begin{pmatrix} c_{00}^* \ldots c_{04}^* \\ \vdots & \ddots & \vdots \\ c_{40}^* & \ldots & c_{44}^* \end{pmatrix}^{-1}$$

Martin Schuster

Characterization of a Segmented n-Type Broad Energy Germanium Detector

A B > A B >

$$M_0 = E_0^{true} \cdot c_{00}^* + E_1^{true} \cdot c_{10}^* + \ldots + E_4^{true} \cdot c_{40}^* \quad . \tag{1}$$

By introducing the assumption that the cross-talk from the segments to the core is the same for all the segments, $c_{10}^* = c_{i0}^*$, $i \in \{2, 3, 4\}$ and using the identity $\sum_{i=1}^{4} E_i^{true} = E_0^{true}$, M_0 becomes:

$$M_0 = E_0^{true} \cdot (c_{00}^* + c_{10}^*)$$
(2)
= $E_0^{true} \cdot c^{core}$. (3)

イロン イヨン イヨン イ

The value of the thus defined c^{core} can be determined by the standard procedure of fitting the core spectrum with the known photon lines using all events.

Martin Schuster

The cross-talk from the core to the segments can mathematically be unified with the segment to segment cross-talk. For demonstration, consider the measured pulse amplitude for segment 1, M_1 . Again making use of the identity $\sum_{i=1}^{4} E_i^{true} = E_0^{true}$:

$$M_{1} = \sum_{i=0}^{4} E_{i}^{true} \cdot c_{i1}^{*}$$
(4)
$$= E_{0}^{true} \cdot c_{01}^{*} + \sum_{i=1}^{4} E_{i}^{true} \cdot c_{i1}^{*}$$
(5)
$$= \sum_{i=1}^{4} E_{i}^{true} \cdot c_{01}^{*} + \sum_{i=1}^{4} E_{i}^{true} \cdot c_{i1}^{*}$$
(6)
$$= \sum_{i=1}^{4} E_{i}^{true} (c_{01}^{*} + c_{i1}^{*}) = \sum_{i=1}^{4} E_{i}^{true} \cdot c_{i1}$$
(7)

A (1) > A (1) > A

Martin Schuster

Reduced matrix c_{ij} , $i, j \in \{1, 2, 3, 4\}$ and the equations:

$$M_{0} = E_{0}^{true} \cdot c^{core}$$

$$(M_{1} \dots M_{4}) = \begin{pmatrix} E_{1}^{true} \dots E_{4}^{true} \end{pmatrix} \cdot \begin{pmatrix} c_{11} \dots c_{14} \\ \vdots & \ddots & \vdots \\ c_{41} \dots & c_{44} \end{pmatrix}$$

$$(9)$$

The matrix elements c_{ij} can be determined by investigating single-segment events.

Martin Schuster

Characterization of a Segmented n-Type Broad Energy Germanium Detector

For single-segment *i* events, $E_i^{true} = E_0^{true}$, $E_{j\neq i}^{true} = 0$. Using segment 1 as an example, the measured pulse amplitude for single-segment 1 events, M_1 , can then be written as:

$$M_{1} = E_{1}^{true} \cdot c_{11} + E_{2}^{true} \cdot c_{21} + E_{3}^{true} \cdot c_{31} + E_{4}^{true} \cdot c_{41}$$
(10)
= $E_{1}^{true} \cdot c_{11} + 0 \cdot c_{21} \dots$ (11)

In general, for single-segment *i* events, $M_i = E_i \cdot c_{ii}$, $i \in \{1, 2, 3, 4\}$. Then the matrix elements c_{ii} can be determined:

$$c_{ii} = \frac{M_i}{E_i^{true}} = \frac{M_i}{E_0^{true}} = \frac{M_i \cdot c^{core}}{M_0}$$
(12)
= $R^{ssi} \cdot c^{core}$. (13)

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Martin Schuster

After the cross-talk correction and energy calibration procedure, Tab 1 gives an overview of the energy resolutions for selected γ -lines and all the segments.

		FWHM [keV]				
Source	γ -line [keV]	Core	Seg. 1	Seg. 2	Seg. 3	Seg. 4
¹³³ Ba	81	3.29	5.15	4.05	4.07	7.26
	356	2.64	4.58	3.47	3.52	6.04
⁶⁰ Co	1173	4.57	4.88	4.16	4.34	8.05
	1332	4.93	5.00	4.39	4.14	7.84
²²⁸ Th	2614	7.65				

Table: Energy resolutions as absolute FWHM in keV. The resolutions for especially characteristic γ -lines for the respective sources are given.

lax-Planck Institute for Physic

2

lax-Planck Institute for Physic

2

The remaining matrix elements can also be determined studying single-segment events. For single-segment *i* events, the measured pulse amplitudes in the other segments $j, j \neq i$, can be written as:

$$M_j = E_i^{true} \cdot c_{ij} \quad , \tag{14}$$

and the ratio between M_j and M_i , $m_{ji} = M_j/M_i$, leads to:

$$m_{ji} = \frac{E_i^{true} \cdot c_{ij}}{E_i^{true} \cdot c_{ii}} = \frac{c_{ij}}{c_{ii}}$$
(15)

$$\Rightarrow c_{ij} = m_{ji} \cdot c_{ii} \quad . \tag{16}$$

Martin Schuster

Characterization of a Segmented n-Type Broad Energy Germanium Detector

ax-Planck Institute for Physics

2

2

Martin Schuster

Characterization of a Segmented n-Type Broad Energy Germanium Detector

≣⇒

2

・ロト ・回ト ・ヨト

Characterization of a Segmented n-Type Broad Energy Germanium Detector

▶ ◀ 클 ▶ ◀ 클 ▶ · 클 · ∽) 역 NaxePlanck Institute for Physics

Segment	Boundary(i, j)	Top-scan	Side-scan
1	$\phi_{4,1}$	124.7 ± 0.6	120.0 ± 0.8
L	$\phi_{1,4}$	181.1 ± 0.6	181.1 ± 0.8
2	$\phi_{4,2}$	244.0 ± 0.6	242.5 ± 0.7
2	$\phi_{2,4}$	302.5 ± 0.6	302.1 ± 0.8
2	$\phi_{4,3}$	7.1 ± 0.5	3.8 ± 0.7
5	$\phi_{3,4}$	64.8 ± 0.6	63.5 ± 0.7
	$\phi_{3,4}$	66.6 ± 0.6	62.8 ± 0.7
	$\phi_{4,1}$	123.0 ± 0.6	120.2 ± 0.8
л	$\phi_{1,4}$	182.5 ± 0.5	180.8 ± 0.7
4	$\phi_{4,2}$	242.4 ± 0.6	242.3 ± 0.6
	$\phi_{2,4}$	303.2 ± 0.8	302.0 ± 0.7
	$\phi_{4,3}$	6.2 ± 0.5	3.4 ± 0.6

2

・ロン ・回と ・ヨン ・ヨン

Martin Schuster

Scan	$\phi_{\textit{offset}}$	$\phi_{\langle 110 angle}$
Тор	-14.52 ± 0.24	37.02 ± 0.24
Side	-15.05 ± 0.30	37.55 ± 0.30

Table: The values of $\phi_{\textit{offset}}$ and $\phi_{\langle 110\rangle},$ see Eq. 11, as determined by fits to the data.

Martin Schuster

Characterization of a Segmented n-Type Broad Energy Germanium Detector

Characterization of a Segmented n-Type Broad Energy Germanium Detector

э

2

lax-Planck Institute for Physic