Stringy T^{3}-fibrations, T-folds and Mirror Symmetry

Ismail Achmed-Zade
Arnold-Sommerfeld-Center

Work to appear with D. Lüst, S. Massai, M.J.D. Hamilton

March 13th, 2017

Overview

(1) String compactifications and dualities

- T-duality
- Mirror Symmetry
(2) T-folds
- The case T^{2}
- The case T^{3}
(3) Stringy T^{3}-bundles
- The useful T^{4}
(4) Conclusion
- Recap
- Open Problems

Introduction

Target space

Super string theory lives on a 10-dimensional pseudo-Riemannian manifold, e.g.

$$
M=\mathbb{R}^{4} \times T^{6}
$$

with metric

$$
G=\left(\begin{array}{ll}
\eta_{\mu \nu} & \\
& G_{T^{6}}
\end{array}\right)
$$

In general we have $M=\Sigma_{\mu \nu} \times X$, with $\Sigma_{\mu \nu}$ a solution to Einsteins equation. M is a solution to the supergravity equations of motion.

Non-geometric backgrounds

X need not be a manifold. Exotic backgrounds can lead to non-commutative and non-associative gravity.

T-duality

Example

Somtimes different backgrounds yield the same physics

$$
\binom{\text { IIA }}{\mathbb{R}^{9} \times S^{1}, R^{2} d t^{2}} \longleftrightarrow\binom{\text { IIB }}{\mathbb{R}^{9} \times S^{1}, \frac{1}{R^{2}} d t^{2}}
$$

More generally T-duality for torus compactifications is an $O(D, D ; \mathbb{Z})$-transformation

$$
\left(T^{D}, G, B, \Phi\right) \longleftrightarrow\left(\hat{T}^{D}, \hat{G}, \hat{B}, \hat{\Phi}\right)
$$

Mirror Symmetry

Hodge diamond of three-fold X and its mirror \hat{X}

Mirror Symmetry

This operation induces the following symmetry

$$
\binom{\mathrm{IIA}}{x, g} \longleftrightarrow\binom{\mathrm{IIB}}{\hat{x}, \hat{g}}
$$

Mirror Symmetry is T-duality!?

SYZ-conjecture [Strominger, Yau, Zaslow, '96]
Consider singular bundles

Apply T-duality along the smooth fibers. Then fill in singular fibers 'as needed'.

Weak SYZ-conjecture

Gross-Wilson/Kontsevich-Soibelman/Todorov

- Many technical issues with SYZ-conjecture, like existence of SLAG fibrations, etc.
- Proved for K3-surfaces in [Gross,Wilson '00]
- Weaker version still remains open problem for CY_{3}
- Key item: find Ooguri-Vafa type of metric near singular locus of fibration. Very hard!

Local model of the K3 surface

Consider the bundle with a Dehn twist $\phi \in S L(2 ; \mathbb{Z})<O(2,2 ; \mathbb{Z})$ as monodromy:

Promote complex structure modulus τ to a function on the base

$$
\tau \longrightarrow \tau(t)=\exp (\log (\phi) t) \cdot \tau_{0}
$$

and obtain metric on the total space, with $\tau_{0}=i$:

$$
d s^{2}=d t^{2}+d x^{2}+(t d x+d y)^{2}
$$

Local model of the $K 3$ surface

Now extend the base:

Promote

$$
\tau(t) \rightarrow \tau(r, t)=\exp (\log (\phi) t) \cdot \tau_{0}(r)
$$

Local model for the K3 surface

Semi-flat metric

On $D^{2} \backslash\{0\}$, set

$$
\tau(r, t)=t+i \log (\mu / r), \quad \mu>0
$$

Then

$$
d s^{2}=\log (\mu / r)\left(r^{2} d t^{2}+d r^{2}+d x^{2}\right)+\frac{1}{\log (\mu / r)}(t d x+d y)^{2}
$$

Semi-flat approximation of a KK-monopole smeared on a circle. Extend over singular fiber by means of the Ooguri-Vafa metric [Ooguri,Vafa, '96].

Gross-Wilson procedure

Setup

We are given an elliptically fibered K3-surface, i.e. the total space of a T^{2}-bundle over $\mathbb{P}_{\mathbb{C}}^{1}$.

- $R i c_{s f}=R i c_{o v}=0$
- Ricint ~ 0 error of $O\left(e^{-C / \epsilon}\right)$
- Ricint $\rightarrow 0$, as $\epsilon=\mathrm{vol}_{T^{2}} \rightarrow 0$

T-folds

Generalize to $\phi \in O(2,2 ; \mathbb{Z}) \cap \exp (\mathfrak{o}(2,2 ; \mathbb{R}))$, see [Lüst, Massai, Vall Camell, '15]:

Again, promote moduli to function on D^{2}

$$
(\tau, \rho) \longrightarrow\left(\exp (\log (\phi) t) \cdot \tau_{0}(r), \exp (\log (\phi) t) \cdot \rho_{0}(r)\right)
$$

Consequence

The total space need not have a well-defined Riemannian structure.
\Rightarrow Notion of T-fold.

Stringy T^{3}-fibrations

Take a monodromy $\phi \in O(3,3 ; \mathbb{Z}) \cap \exp (\mathfrak{o}(3,3 ; \mathbb{R}))$.

Question:

Is there a convenient way to parametrize the metric and B-field in terms of moduli?

Ansatz for metric

Yes we can!

$$
G=\frac{1}{\sqrt[{2 / 3 / \sqrt{\tau_{2} \sigma_{2}}}]{ }}\left(\begin{array}{ccc}
1 & \tau_{1} & \sigma_{1} \\
\tau_{1} & |\tau|^{2} & \tau_{1} \sigma_{1}+\rho_{1} \tau_{2}^{2} \\
\sigma_{1} & \tau_{1} \sigma_{1}+\rho_{1} \tau_{2}^{2} & |\sigma|^{2}+\rho_{1}^{2} \tau_{2}^{2}
\end{array}\right)
$$

$$
\begin{aligned}
\tau & =\tau_{1}+i \tau_{2}, \\
\rho & =\rho_{1}+i \rho_{2}, \\
\sigma & =\sigma_{1}+i \sigma_{2} .
\end{aligned}
$$

Warning: ρ is not related to the Kähler modulus of the T^{2} in any way!

Figure: Fundamental cell of T^{3}

Embedding the KK-monopole

Firstly consider

$$
\phi=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Then

$$
G=\frac{1}{\tau_{2}}\left(\begin{array}{ccc}
1 & \tau_{1} & 0 \\
\tau_{1} & |\tau|^{2} & 0 \\
0 & 0 & \tau_{2}
\end{array}\right)
$$

together with

$$
\begin{aligned}
\tau & =t+i \log (\mu / r) \\
\sigma & =\frac{1}{2} i \log (\mu / r) \\
\rho & =-\frac{1}{2} i \log (\mu / r)
\end{aligned}
$$

Another version of the KK-monopole

Taking

$$
\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

we can obtain

$$
G=\frac{1}{\tilde{\tau}_{2}}\left(\begin{array}{ccc}
1 & \tilde{\tau}_{1}+1 & -\tilde{\tau}_{1} \\
\tilde{\tau}_{1}+1 & |\tilde{\tau}+1|^{2} & -\tilde{\tau}_{1}^{2}-\tilde{\tau}_{1}-\tilde{\tau}_{2}{ }^{2} \\
-\tilde{\tau}_{1} & -\tilde{\tau}_{1}^{2}-\tilde{\tau}_{1}-\tilde{\tau}_{2}^{2} & \tilde{\tau}_{1}{ }^{2}+\tilde{\tau}_{2}{ }^{2}+\tilde{\tau}_{2}
\end{array}\right) .
$$

with $\tilde{\tau}=t+i \log (\mu / r)$.

But...

This monodromy is conjugate in $S L(3 ; \mathbb{Z})$ to the monodromy of the KK-monopole. Why care about this?

Higher dimensional Ooguri-Vafa metric?

Local model

$$
\begin{gathered}
T_{1}=\left(\begin{array}{ccc}
1 & -1 & -1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
T_{3}=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{gathered}
$$

Figure: The base is a connected open subset of $\mathbb{R}^{3} ; S^{2}$ intersects the singular locus in three points

Gross-Wilson program for the quintic CY_{3} ?

Now we can write down an approximately Ricci-flat metric on the thrice-punctured S^{2} around a vertex:

$$
T_{1}^{-1}
$$

Figure: Deformation of a punctured S^{2} around vertex

Program

Consider a foliation of $\mathbb{R}^{3} \backslash \Delta$, where Δ is the singular locus. Then possible to prove Gross-Kontsevich-Soibelman-Wilson ('weak' SYZ) conjecture?

Stringy T^{3} as geometric T^{4}

Idea

Use a known map $S O(3,3) \rightarrow S L(4)$ to interpret stringy T^{3}-bundles, as geometric T^{4}-bundles. Connection to the correspondence

$$
\text { IIA on } T^{3} \longleftrightarrow \text { M-theory on } T^{4}
$$

as in [McGreevy, Vegh, '08].

Data transfer

$$
\left(G_{T^{3}}, B_{T^{3}}\right) \longleftrightarrow\left(G_{T^{4}}, \operatorname{vol}_{T^{4}}=1\right) .
$$

The global model

In analogy to K3-surface there is a construction:

a singular bundle, with monodromies given by $S L(4 ; \mathbb{Z})$-matrices [Donagi, Gao, Schulz, '08].

Consistency Condition

$$
A^{16-4 m n} B_{1} C_{2} B_{2} C_{1} B_{3} C_{3} B_{4} C_{4}=i d
$$

The global model

Gross-Wilson procedure

- The singular locus is given by $24-4 m n$ points on the base
- For $m=n=0$ we recover a $K 3 \times T^{2}$
- On their own all monodromies are conjugate in $S L(4 ; \mathbb{Z})$ to

$$
\left(\begin{array}{ll|ll}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
\hline 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

- Therefore the topology of any singular fiber is $T^{2} \times I_{1}$
- There is no global conjugation achieving this simultaneously for all monodromies
- Twisted version of Gross-Wilson? (For any (m, n))

Recap

- T-folds glued together from T^{3}-bundles by $O(3,3 ; \mathbb{Z})$-transformations
- Studied T^{3}-bundles over D^{2} with a B-field
- Already geometric case, i.e. transition functions only diffeomorphisms and gauge transformations non-trivial
- Non-geometric bundles are studied by studying geometric T^{4}-bundles
- In this way construct global model for non-geometric T^{3}-fibration over $\mathbb{P}_{\mathbb{C}}^{1}$

Open problems

- Using the fact that IIA on T^{3} is related to M-theory on T^{4} investigate manifolds with G_{2}-holonomy, e.g. Joyce manifolds
- Explore Heterotic/F-theory duality: Is the Jacobian of Σ_{2} related to $T_{\tau}^{2} \times T_{\rho}^{2}$ bundles?
- What is the shape of a singular fiber in a stringy T^{3}-fibration? Other topological questions.

Thanks everyone!

