## Stringy $T^3$ -fibrations, T-folds and Mirror Symmetry

#### Ismail Achmed-Zade

#### Arnold-Sommerfeld-Center

#### Work to appear with D. Lüst, S. Massai, M.J.D. Hamilton

#### March 13th, 2017

### Overview

### 1 String compactifications and dualities

- T-duality
- Mirror Symmetry

### 2 T-folds

- The case  $T^2$
- The case  $T^3$

# Stringy T<sup>3</sup>-bundles The useful T<sup>4</sup>

### 4 Conclusion

- Recap
- Open Problems

### Introduction

### Target space

Super string theory lives on a 10-dimensional pseudo-Riemannian manifold, e.g.

$$M = \mathbb{R}^4 \times T^6$$

with metric

$$G = \left(\begin{array}{cc} \eta_{\mu\nu} & \\ & G_{T^6} \end{array}\right)$$

In general we have  $M = \Sigma_{\mu\nu} \times X$ , with  $\Sigma_{\mu\nu}$  a solution to Einsteins equation. *M* is a solution to the supergravity equations of motion.

#### Non-geometric backgrounds

X need not be a manifold. Exotic backgrounds can lead to non-commutative and non-associative gravity.

Ismail Achmed-Zade (ASC)

March 13th, 2017 3 / 24

< 67 ▶

### Example

Somtimes different backgrounds yield the same physics

$$\left(\begin{array}{c}\mathsf{IIA}\\\mathbb{R}^9\times S^1, R^2 dt^2\end{array}\right)\longleftrightarrow \left(\begin{array}{c}\mathsf{IIB}\\\mathbb{R}^9\times S^1, \frac{1}{R^2} dt^2\end{array}\right)$$

More generally T-duality for torus compactifications is an  $O(D, D; \mathbb{Z})$ -transformation

$$(T^D, G, B, \Phi) \longleftrightarrow (\hat{T}^D, \hat{G}, \hat{B}, \hat{\Phi})$$

### Hodge diamond of three-fold X and its mirror $\hat{X}$



### Mirror Symmetry

This operation induces the following symmetry

$$\left(\begin{array}{c}\mathsf{IIA}\\X,g\end{array}\right)\longleftrightarrow \left(\begin{array}{c}\mathsf{IIB}\\\hat{X},\hat{g}\end{array}\right)$$

SYZ-conjecture [Strominger, Yau, Zaslow, '96]

Consider singular bundles



Apply T-duality along the smooth fibers. Then fill in singular fibers 'as needed'.

### Gross-Wilson/Kontsevich-Soibelman/Todorov

- Many technical issues with SYZ-conjecture, like existence of SLAG fibrations, etc.
- Proved for K3-surfaces in [Gross,Wilson '00]
- Weaker version still remains open problem for  $CY_3$
- Key item: find Ooguri-Vafa type of metric near singular locus of fibration. Very hard!

### Local model of the K3 surface

Consider the bundle with a Dehn twist  $\phi \in SL(2; \mathbb{Z}) < O(2, 2; \mathbb{Z})$  as monodromy:



Promote complex structure modulus au to a function on the base

$$au \longrightarrow au(t) = \exp(\log(\phi)t) \cdot au_0,$$

and obtain metric on the total space, with  $\tau_0 = i$ :

$$ds^2 = dt^2 + dx^2 + (tdx + dy)^2$$

### Local model of the K3 surface

Now extend the base:



Promote

$$au(t) 
ightarrow au(r,t) = \exp(\log(\phi)t) \cdot au_0(r).$$

### Semi-flat metric

On  $D^2 \setminus \{0\}$ , set

$$\tau(r,t) = t + i \log(\mu/r), \quad \mu > 0.$$

Then

$$ds^{2} = \log(\mu/r)(r^{2}dt^{2} + dr^{2} + dx^{2}) + \frac{1}{\log(\mu/r)}(tdx + dy)^{2}$$

Semi-flat approximation of a KK-monopole smeared on a circle. Extend over singular fiber by means of the Ooguri-Vafa metric [Ooguri,Vafa, '96].

### Setup

We are given an elliptically fibered K3-surface, i.e. the total space of a  $T^2$ -bundle over  $\mathbb{P}^1_{\mathbb{C}}$ .



- $Ric_{sf} = Ric_{ov} = 0$
- $Ric_{int} \sim 0$  error of  $O(e^{-C/\epsilon})$
- $\operatorname{\it Ric}_{\operatorname{\it int}} 
  ightarrow 0$ , as  $\epsilon = \operatorname{vol}|_{\mathcal{T}^2} 
  ightarrow 0$

### T-folds

Generalize to  $\phi \in O(2,2;\mathbb{Z}) \cap \exp(\mathfrak{o}(2,2;\mathbb{R}))$ , see [Lüst, Massai, Vall Camell, '15]:



Again, promote moduli to function on  $D^2$ 

$$( au, 
ho) \longrightarrow (\exp(\log(\phi)t) \cdot au_0(r), \ \exp(\log(\phi)t) \cdot 
ho_0(r)).$$

#### Consequence

The total space need not have a well-defined Riemannian structure.  $\Rightarrow$  Notion of *T-fold*.

Ismail Achmed-Zade (ASC)

Stringy  $T^3$ -fibrations and applications

Take a monodromy  $\phi \in O(3,3;\mathbb{Z}) \cap \exp(\mathfrak{o}(3,3;\mathbb{R}))$ .



#### Question:

Is there a convenient way to parametrize the metric and B-field in terms of moduli?

### Ansatz for metric

### Yes we can!

$$G = \frac{1}{\sqrt[2]{3}{\tau_2 \sigma_2}} \begin{pmatrix} 1 & \tau_1 & \sigma_1 \\ \tau_1 & |\tau|^2 & \tau_1 \sigma_1 + \rho_1 \tau_2^2 \\ \sigma_1 & \tau_1 \sigma_1 + \rho_1 \tau_2^2 & |\sigma|^2 + \rho_1^2 \tau_2^2 \end{pmatrix}$$

$$\begin{aligned} \tau &= \tau_1 + i\tau_2, \\ \rho &= \rho_1 + i\rho_2, \\ \sigma &= \sigma_1 + i\sigma_2. \end{aligned}$$

**Warning:**  $\rho$  is not related to the Kähler modulus of the  $T^2$  in any way!



Figure: Fundamental cell of  $T^3$ 

14 / 24

### Embedding the KK-monopole

Firstly consider

$$\phi = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$
$$G = \frac{1}{\tau_2} \begin{pmatrix} 1 & \tau_1 & 0 \\ \tau_1 & |\tau|^2 & 0 \\ 0 & 0 & \tau_2 \end{pmatrix}$$

together with

$$\begin{aligned} \tau &= t + i \log(\mu/r) \\ \sigma &= \frac{1}{2} i \log(\mu/r) \\ \rho &= -\frac{1}{2} i \log(\mu/r). \end{aligned}$$

Ismail Achmed-Zade (ASC)

< 67 ▶

э

15 / 24

### Another version of the KK-monopole

Taking

$$\left(\begin{array}{rrrr}1 & 1 & 1\\ 0 & 1 & 0\\ 0 & 0 & 1\end{array}\right)$$

we can obtain

$$G = \frac{1}{\tilde{\tau}_2} \begin{pmatrix} 1 & \tilde{\tau}_1 + 1 & -\tilde{\tau}_1 \\ \tilde{\tau}_1 + 1 & |\tilde{\tau} + 1|^2 & -\tilde{\tau}_1^2 - \tilde{\tau}_1 - \tilde{\tau}_2^2 \\ -\tilde{\tau}_1 & -\tilde{\tau}_1^2 - \tilde{\tau}_1 - \tilde{\tau}_2^2 & \tilde{\tau}_1^2 + \tilde{\tau}_2^2 + \tilde{\tau}_2 \end{pmatrix}$$

with  $\tilde{\tau} = t + i \log(\mu/r)$ .

#### But...

This monodromy is conjugate in  $SL(3; \mathbb{Z})$  to the monodromy of the KK-monopole. Why care about this?

Ismail Achmed-Zade (ASC)

March 13th, 2017 16 / 24

### Higher dimensional Ooguri-Vafa metric?

### Local model

$$T_{1} = \begin{pmatrix} 1 & -1 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{T_{2}} T_{2} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$T_{3} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Figure: The base is a connected open subset of  $\mathbb{R}^3$ ;  $S^2$  intersects the singular locus in three points

### Gross-Wilson program for the quintic $CY_3$ ?

Now we can write down an approximately Ricci-flat metric on the thrice-punctured  $S^2$  around a vertex:



Figure: Deformation of a punctured  $S^2$  around vertex

#### Program

Consider a foliation of  $\mathbb{R}^3 \setminus \Delta$ , where  $\Delta$  is the singular locus. Then possible to prove Gross-Kontsevich-Soibelman-Wilson ('weak' SYZ) conjecture?

Ismail Achmed-Zade (ASC)

Stringy  $T^3$ -fibrations and applications

18 / 24

#### Idea

Use a known map  $SO(3,3) \rightarrow SL(4)$  to interpret stringy  $T^3$ -bundles, as geometric  $T^4$ -bundles. Connection to the correspondence

IIA on 
$$T^3 \longleftrightarrow$$
 M-theory on  $T^4$ 

as in [McGreevy,Vegh, '08].

#### Data transfer

$$(G_{T^3}, B_{T^3}) \longleftrightarrow (G_{T^4}, vol_{T^4} = 1).$$

In analogy to K3-surface there is a construction:



a singular bundle, with monodromies given by  $SL(4; \mathbb{Z})$ -matrices [Donagi, Gao, Schulz, '08].

#### Consistency Condition

$$A^{16-4mn}B_1C_2B_2C_1B_3C_3B_4C_4 = id$$

Ismail Achmed-Zade (ASC)

## The global model

### Gross-Wilson procedure

- The singular locus is given by 24 4mn points on the base
- For m = n = 0 we recover a  $K3 \times T^2$
- On their own all monodromies are conjugate in  $SL(4;\mathbb{Z})$  to

| ( | 1 | 1 | 0 | 0 |   |
|---|---|---|---|---|---|
|   | 0 | 1 | 0 | 0 |   |
| - | 0 | 0 | 1 | 0 | - |
| ĺ | 0 | 0 | 0 | 1 | Ϊ |

- Therefore the topology of any singular fiber is  $\mathcal{T}^2 imes \mathit{I}_1$
- There is no global conjugation achieving this simultaneously for all monodromies
- Twisted version of Gross-Wilson? (For any (m, n))

▲ 同 ▶ → 三 ▶

- T-folds glued together from  $T^3$ -bundles by  $O(3,3;\mathbb{Z})$ -transformations
- Studied  $T^3$ -bundles over  $D^2$  with a *B*-field
- Already geometric case, i.e. transition functions only diffeomorphisms and gauge transformations non-trivial
- Non-geometric bundles are studied by studying geometric  $T^4$ -bundles
- $\bullet$  In this way construct global model for non-geometric  $\mathcal{T}^3\mbox{-fibration}$  over  $\mathbb{P}^1_{\mathbb{C}}$

- Using the fact that IIA on  $T^3$  is related to *M*-theory on  $T^4$  investigate manifolds with  $G_2$ -holonomy, e.g. Joyce manifolds
- Explore Heterotic/F-theory duality: Is the Jacobian of  $\Sigma_2$  related to  $T_{\tau}^2 \times T_{\rho}^2$  bundles?
- What is the shape of a singular fiber in a stringy *T*<sup>3</sup>-fibration? Other topological questions.

# Thanks everyone!

< 67 ▶

3