

Alkali Antimonide Photocathode Engineering

John Smedley Brookhaven National Laboratory

Electron Photon Instrumentation Center @ Stony Brook and Brookhaven

Overview

A little bit about accelerators Brief intro to 3-step model as it applies to semiconductors Where do we need to be? What is limiting us now? In situ materials analysis during cathode formation How to grow smoother cathodes (and why you might want to) Toward single crystals and heterojunctions

Reference Material

Some of this talk comes from a course on Cathode Physics Matt Poelker and I taught at the US Particle Accelerator School

http://uspas.fnal.gov/materials/12UTA/UTA-Cathode.shtml

https://science.energy.gov/~/media/bes/pdf/reports/2017/Future_Electron_Source_Worskhop_Report.pdf

Modern Theory and Applications of Photocathodes W.E. Spicer & A. Herrera-Gómez SAC-PUB-6306 (1993)

Great Surface Science Resource: http://www.philiphofmann.net/surflec3/index.html

Does the particle source matter?... Sometimes

- The electron beam properties determine the photon beam properties
 - Pulse duration, degree of coherence, flux
- In all light sources through 3rd generation, the phase space is determined by the ring

- In X-ray free electron lasers (LCLS II, XFEL, MaRIE), this will change – the electron source will determine the beam properties
- The highest brightness sources available are photoinjectors, which use a laser on a photocathode to control the spatial and temporal profile of the emitted electron beam

Applications at the State of the Art

Electron cooling of ion machines

Requires high current with long operational life, other requirements are modest (~50 mA with 5µm emittance)

FEL sources

Going to moderate currents (still under 1 mA); emittance improvement is a big deal (ideally 0.1 μm)

Ultrafast Electron Diffraction/Microscopy

High brightness! Ideally a factor of 100 from current photoinjectors. Very low current. Short pulse duration (100 fs at sample, less for some applications)

Emittance Leverage at LCLS-II/HXR (15 GeV, 120 Hz)

Three Step Model of Photoemission - Semiconductors

 Excitation of e⁻ Reflection, Transmission Energy distribution of excited e⁻

2) Transit to the Surface

- e⁻-phonon scattering e⁻-defect scattering e⁻-e⁻ scattering Random Walk
- Escape surface
 Overcome Workfunction
 Multiple tries

Need to account for Random Walk in cathode suggests Monte Carlo modeling

K₂CsSb: A Good Candidate

K₂CsSb DOS

A.R.H.F. Ettema and R.A. de Groot, Phys. Rev. B 66, 115102 (2002)

States/eV

Alkali Antimonide Family

Bull. Mater. Sci. Indian Academy of Sciences. DOI 10.1007/s12034-016-1300-1

Parameters, and how to affect them

Increasing the electron MFP will improve the QE. Phonon scattering cannot be removed, but a more perfect crystal can reduce defect and impurity scattering:

Control of surface roughness is critical to minimizing the intrinsic emittance – epitaxial growth?

A question to consider: Why can CsI (another ionic crystal, PEA cathode) achieve QE>80%?

T.H. Di Stefano and W.E. Spicer, Phys. Rev. B 7, 1554 (1973)

Large band gap and small electron affinity play a role, but, so does crystal quality.

Scattering

Phonon scattering can be helpful

Well known in thermalization of electrons in GaAs and Diamond

Luca & company recently demonstrated in PEA materials: 20% reduction in MTE for transmission mode operation

150 nm Na₂KSb (with few nm surface layer)

Appl. Phys. Lett. 108, 124105 (2016)

Grain Boundaries

Grain boundary scattering: just bad

Large grains or Epitaxy

One solution: REALY thick cathodes (50 optical absorption lengths)

J. Vac. Sci. Technol. A 34, 021509 (2016)

Lattice Temperature

For E_{excess}<0, MTE=kT, and lattice temperature becomes important

Photoemission in this domain relies on defect states

May depend on crystal quality

Material conductivity will as well

Roughness and Emittance

25 nm roughness, 100 nm spatial period

S. Schubert et al., APL Materials 1, 032119 (2013)

Emittance vs field measured with Momentatron, 532 nm light

We now understand why sequential growth causes roughness, and can achieve near-atomic roughness with Alkali antimonides! (Next Section)

T. Vecchione, et al, Proc. of IPAC12, 655 (2012)

In operando analysis during growth (setup at NSLS/X21 & CHESS G3 – ISR soon)

• Growth and characterization system

In-situ UHV growth system (10⁻¹⁰ ~ 10⁻¹¹Torr) installed at G3, CHESS

Experimental set up: K₂CsSb cathode growth

Simultaneously Acquire XRD and GISAXS

- Understanding reaction dynamics through crystalline phase evolution
- Map the thickness and roughness evolution of the cathode
- Is there a correlation between reactivity, QE and roughness?

Stepwise High Resolution XRD A little bit of Potassium goes a long way...

S. Schubert et al., J. Appl. Phys. 120, 035303 (2016)

Stepwise High Resolution XRD A little bit of Potassium goes a long way...

Room Temperature Recrystallization to K₃Sb Better QE of K₃Sb Principally Hexagonal 100C Substrate Recrystallization to K_xSb Cubic K₃Sb first

Eventually Hex appears (oops!)

S. Schubert et al., J. Appl. Phys. 120, 035303 (2016)

Stepwise High Resolution XRD

K₃Sb resists Cs incorporation Cubic K₃Sb converts quickly QE never improves Hex K₃Sb mostly converts

S. Schubert et al., J. Appl. Phys. 120, 035303 (2016)

Stepwise High Resolution XRD

100C without "too much" K 15 nm Sb, 70 nm K Stop at "mixed phase" K_xSb lower QE of K₃Sb

90 nm Cs sufficient Full conversion to CsK₂Sb QE = 6.7% at 532 nm

Cathode Texture

Sb evaporated at RT Clear [003] texture

Add Potassium at 140C Textured final film But not K₃Sb

Add Cesium at 140C Textured final film Both [220] & [222] (domains?) Final QE 7.5% @ 532nm

Engineering a Smoother Cathode

Idea: Never let Sb crystalize

X-ray reflectometry (XRR) provides in-situ thickness monitoring

 $\theta_{c} = \arccos(n_{medium} / n_{air})$

Understand 'sticking' coefficient of materials to substrates at various temperatures

Observe the intermixing vs layering of materials

Observe the onset of roughness

XRR shows roughness evolution

Deposited Layers	Total Thickness (Å)	Roughness (Å)
Cs-K-Sb-Cs-K-Sb/Si	469	32
K-Sb-Cs-K-Sb/Si	449	36
Sb-Cs-K-Sb/Si	200	21.3
Cs-K-Sb/Si	174	13.2
K-Sb/Si	141	10.5
Sb/Si	35	2.9
Si Substrate	-	3.1

The substrate fit includes 1.5 nm of SiO₂

Multi-layer subcrystalline film is smoother, At slight loss of QE

Sputter growth of Bi-alkali photocathode

Sputter target and sputter gun was product of RMD. Inc. Photos of sputter target prep are contributed by H. Bhandari

Before

Sputtering

Sputter Growth

25 nm K₂CsSb + layers of (total 30 nm) Cs evap. Silicon substrate at 90 C, layer barely crystalline

Surface roughness & QE of Sputtered Photocathodes

Ternary Co-evaporation

Simultaneously evaporate from Sb evaporator and K,Cs effusion cells

In situ, In operado XRR, XRF, XRD & Quantum efficiency (QE) measurement

Growth rate are controlled by J tube temperature, valve and shutter

Stoichiometry & Structural Analysis

This works for the entire Alkali antimonide family – we've created pseudo single crystals with a wide range of stoichiometries

Surface Roughness & QE

	QE@532nm(%)	Roughness(A)	Thickness (A)	Grain size (A)
L004 Si	4.9	3.5	234	155
L005 Si	5.8	11.5	815.3	277
L006 Si	5.4	13.8	757.5	202

Simultaneous evaporation of all constituents results in no crystal phase transformation

Smooth, and High crystal quality => High QE

Co-deposition leads to efficient and ultra-smooth cathodes Ternary Co-evaporation at LBNL

Quantity	Sequential deposition	Co-deposition
RMS roughness (nm)	2.5	0.6 5 MV/m
$\epsilon_5 \ (\mu m/mm \ rms)$	0.18	0.07
ϵ_{20} (µm/mm rms)	0.36	_{0.14} ← 20 MV/m
ϵ_{100} (µm/mm rms)	0.80	0.31
		100 MV/m

J. Feng et al., J. Appl. Phys., 121(4) 044904, 2017

20 MV/m

- significant emittance degradation for sequential method
 no practical degradation with co-deposition
- LN2 threshold emission
 - significant degradation, even with co-deposition
 - we need films smoother than 0.6 nm!!

Co-deposited K2CsSb yield spectrum

2-step Co-evaporation

Two-step recipe:

- K+Sb co-deposition, maximize QE at 380 nm, @ ~120°C
- Cs deposition on top @ ~100°C until QE (530 nm) maximizes

K:Sb becomes close to 3:1 shortly after K-Sb co-deposition starts

Spectral response:

- K₃Sb layer: peak 3.5% at 360 nm; 0.047% at 530 nm
- After Cs: peak 26% at 360 nm; 7% at 530 nm

Most of the performance advantages of Ternary co-evaporation, but MUCH easier

35

2-step Co-evaporation

XRR

XRD

Diffraction arcs – textured film (both on Si (100) & Si (111))

Crystal Quality

Wide angle X-ray diffraction patterns

Two-step recipe

Large Grain, highly textured

37

Effusion cells – bilayer photocathode

Controllable stoichiometry, crystal structure from effusion cells – Heterojunction fabrication

Effusion cells – bilayer photocathode

Different stages during bilayer photocathode fabrication

Sta	ige	Thickn	ess (Å)	Rough	ness (Å)	
After	Cs ₃ Sb	54 (-7.10	43 , 6.46)	7.89 (-0.15, 0.21)		
 From K₃Sb to K₃Sb/Cs₃Sb: XRD result: thin K₃Sb at bottom, thick K-Cs-Sb at top 						
Final bilayer photocathode						
Layer	Thic	kness Å)	Rougl (Å	nness Å)	Elect density	ron y (Å ⁻³)
K-Cs-Sb	3 (-2.0	73), 1.2)	7. (-0.06)	89 , 0.08)	1.1	.6
Interface	7 . (-3.55	. <mark>86</mark> 5, 4.20)	7. (-0.52)	<mark>10</mark> , 1.14)	1.0	3
K ₃ Sb	1 (-3.5	54 5, 3.9)	30 (-2.3)	. <mark>3</mark> , 1.3)	0.9	9

Not the heterojunction we were trying for... but still a sharp heterojunction

K₂CsSb thermal decomposition

Photocathode growth and lifetime study at Berkeley Lab

Typical QE increase curve during K-Cs-Sb co-dep growth

Lifetime at elevated cathode temperature

Temperature	Exponential fi	t – first term	Exponential fit – second term		
(°C)	Decay	Amplitude	Decay	Amplitude	
	constant (τ_1)	(A ₁)	constant (τ_2)	(A ₂)	
RT	3167	1.06	-	-	
55	3443	1.08	-	-	
71	741	1.05	-	-	
77	761.9	0.51	15.7	0.52	
93	114.3	0.39	7.63	0.61	
110	28.8	0.18	1.65	0.85	

K₂CsSb thermal decomposition

X-ray characterization on co-deposited K-Cs-Sb at CHESS, decayed at 100°C

K₂CsSb thermal decomposition

Spectral response measurement and recesiation at Berkeley Lab

Alkali Antimonide thermal decomposition

Alkali Antimonide Cathodes What we've learned

- We now have a tool which is capable of optimizing growth parameters for figures of merit other than Quantum Efficiency, and to specifically target material properties.
- We understand the formation chemistry of these materials, and why traditional deposition results in rough cathodes
- RMS roughness down almost 2 orders of magnitude, to ~atomic scale
- Avoiding crystalline Sb helps, as does co-evaporating alkali
- Sputter deposition is good easy to do, covers large area, almost atomically smooth even for thick films – but alkali poor
- Real time XRF feedback provides option of ternary coevaporation, producing best cathode
- Can now consider heterojunctions and doping of alkali antimonides (following a similar development path to the III-V materials)
- Can consider ultra thin (under 10 nm) cathodes to improve response time
- Conformal coating of structured surfaces possible

Thanks for your attention!

- Thanks to K. Attenkofer, S. Schubert, M. Ruiz Oses, J. Xie, J. Kuhn, M. Schmeißer, J. Wang, H. Padmore, E. M. Muller, M. Gaowei, J. Walsh, T. Vecchione, J. Sinsheimer, Z. Ding
- DOE Office of Science Basic Energy Science and Nuclear Physics

Roughness and Emittance

$$\varepsilon_{rough} = \sigma_{x,y} \sqrt{\frac{\pi^2 a^2}{2m_0 c^2 \lambda} Ee}$$

D. Xiang et al. Proceedings of PAC07, Albuquerque, New Mexico, USA

Field dependent emittance growth: 20 nm amplitude, 80 nm period

Emittance growth at 20 MV/m, period 4 x amplitude.

Calculations by H. Padmore