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Picosecond... [NIM A 795, 2015], B. Adams et. al.
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Have demonstrated:
1. Gains of >10’
2. Timing resolution ~50ps on single photon

Sealed 20cm x 20cm ceramic LAPPD
in the middle of photocathode
formation at U of C

Fabrication process being studied at U. of C., see talk by Andrey Elagin earlier today



Single photons resolved in 3D (2 space + 1 time)

Energetic charged
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Arrival time difference > o,

Time Projection

s = Detector
Plane
ToXo Yo 2y (t1-tv)c '
---- P
(2., .
W) "
(T2, Y;)

3D-vertex reconstruction using 2 space + time coordinates



Prototype OTPC T

The design and performance of a prototype water Cherenkov optical
time-projection chamber

Eric Oberla®, Henry J. Frisch®

“Enrico Fermi Institute, University of Chicago; 5640 S. Ellis Ave., Chicago IL, 60637

Fermilab test beam experiment,
Eric Oberla’s PhD thesis, 2015

e 28 cm diameter, 77 cm long cylindrical detector

e 40 kg of water
* Mirrors bounce photons to lower $SS on PMTs

Prototype 40 kg OTPC
(w/ mirrors!)
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Electron Time Projection Optical Time Projection

* Drift electrons at a constant velocity « Drift photons at constant velocity
(E-field)
e Limit dispersion by various methods
* Limit diffusion with B field (wavelength filtering, etc..)
* Charged particles create ionization * Charged particles create Cherenkov light
along track along track
* Collect position and time at end of * Collect position and time at end of drift
drift
* Photons can be reflected to increase
* Electrons are used only once (only 1 sensitive area using path length to
path) identify bounce
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In simplest case, track parameters can be solved analytically through ray tracing (ignoring dispersion and
scattering)
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The Cherenkov photons propagate at the group velocity of water. The mean Slide from E. Oberla’s talk,
OTPC group velocity <Vy,,,> =218 mm/ns (ie. the OTPC ‘drift speed’) ICHEP2016
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Prototype OTPC
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Prototype OTPC

Time
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* 60 mrad angular resolution over
40cm lever arm
e 1.5 cm spatial resolution

Charged particle tracking in water!
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Scaled up OTPC

Prototype 40 kg OTPC
(w/ mirrors!)

40 kg

Features:

|sot r0piC sources = P> Sphere vs. cylinder ===, Short electron reco. from

. OvBB, B2, SNe
) . . Tracking on lengths ¥ rerm
Directionality =———— ", * " ocn

Charged Particle ID =————> muons, electrons, showers ...
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OTPC Simulation at UC

Python+Geant4 simulation does:

e Ray-tracing/Mirror reflections

* Photodetector resolution
(smearing, QE, etc...)

e Track generation (Geant4)

Dispersion in water

ANY detector geometry, ANY

Mirror area/photocathode area = M/C mirror geometry
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My favorite design thus far

lcosahedron

* Close to equal spacing of detectors on sphere surface M/C ~ 83%
* Low number of LAPPDs (12)
* Close to uniform response from all directions




Question

How much range in the group velocity (dispersion) can one afford for < 1cm
vertex and tracking resolution?

dt. 1 tan#; Bt = Wl
dz f¢ = Vgroup = Vgroup

Need to choose a reference group velocity

-
-

Reference
point r ¢

Photosensor at r;

Figure from Sebastian Lorenz thesis dissertation, 2016
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M/C = 0 example event

4.737

4211

Info:
* Hit time
* Hit position

deteztion t?me (ns)

1579

Truth info:

e Birth point (track
points)

* Wavelength/vgroup

1.053

Main study: 5 MeV electron tracks

Sample is small, 300 isotropic events

no scattering (straight tracks)

No mirrors, photocathode everywhere

Perfect photodetectors (100% QE, perfect timing, ...)

Starting simple
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Kamland Zen (Michinari Sakai thesis disertation 2016)

4-Lateration Time of flight

(o — Zhit)® + (Yo — Ynit)? + (20 — 2hit)? = v2(to — thit)?

Aircraft (x,y,z)

z '2@

Interrogator

Time Difference
Of Arrival
Processing

1. Minimize o in t.o.f. distribution for the set
of “test points”
2. Repeat with smaller lattice spacing

> Outputs a probable track point
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How close does this get to a
true point on the track?

In this simplified scenario | need
< 2% smear on group velocity to
get 1 cm vertexing

0
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o
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N
I

N
I

— 1 cm resolution line

Median distance from closest track point (cm)

o
I

velocity smear (%)
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Dispersion
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Dispersion

Group velocity in HPLC water

N

0.22

0.21—

f:: 0.20—

1) Accept only photons in an engineered E

2.0.19- : best reference velocity
wavelength range 2 015 :
2) Engineer that range to maximize # ‘éo_n_ I
Cherenkov photons after QE and 8016 :
minimize group velocity uncertainty 015 :: Wavelength range R

0.14—

mo W0 w0 o wfél’e?engmm?n‘li” I
* There is a "best reference velocity” given a
wavelength range
* The velocity range gets smaller as you cut out
dispersed photons

Can engineer wavelength acceptance ranges
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Engineered wavelength filter
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et Prompt

175—
1) Separate photons into

“bounce groups” 150
2) Assign uncertainties to

photons that have traveled

longer than others 100
3) Weight towards earliest

light

1 bounce

125 —
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3 bounce

50—
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time (ns)

Can assign uncertainties to photons that
have traveled longer than others
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Possible particle sources

Muons and other particles
Small, “5MeV electron tracks (particle ID demonstration)

Low-Ene.r.gy

Accelerator Facility

Fermilab test beam

P e
L. 2

or

Deuterium-Tritium
Neutron Generator
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Possible particle sources: Deuterium
Tritium Neutron Generator (DTG)

-
M=

“The decay of N16, with a Q
value of 10.4 MeV, is dominated

T ﬁ by an electron with a 4.3 MeV

i
E =142 MeV |

fompf®N |

A : :.Ilﬂl H\\’h
Y

Super-Kamiokande Collaboration, arXiv:0005014v3 (2001)

maximum energy coincident
with a 6.1 MeV gamma ray ...”

K
¥

¥
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Lead into ANNIE at FNAL Spegil | [TEs

Experimental overlap in:
-electronics
-readout/hit-pattern formation
-time projection reconstruction
-water tight hardware

Cal. 30-channel input
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Questions

1. What is the highest mirror to photocathode ratio for 3cm electron tracking?
* S5

 Depends on developing reconstruction methods that use bounces

2. How much dispersion is tolerable in reconstruction?
 Depends on nphot, algorithm, QE distribution, ...

3. How can we beat dispersion down to minimize time uncertainty contribution?
e How few photons can you reconstruct with?

 What tricks can we do with wavelength filtering?

4. What are good calibration sources for OvBB backgrounds, solar neutrinos, ...?

When will we be able to make LAPPDs? This is my 3™ year in the PhD program ...
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Backup slides
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Reconstruction low M/C

1) Start with FULL photocathode coverage
2) Optimize a reconstruction
3) Then increase M/C ratio
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Flux at Earth [cm 2 per second per MeV]
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Andrey Elagin. “Separating Double-Beta Decay Events from Solar Neutrino Interactions in a Kiloton-Scale
Liquid Scintillator Detector By Fast Timing”. NIM A, 2016
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Figure 1: The spectrum in kinetic energy of one of the electrons in 0vB3- decays of '°Te (endpoint 2.53 MeV). The vertical dashed line indicates
the Cherenkov threshold in the liquid scintillator of the detector model. Single electrons from ®B  solar neutrinos that are potential background to
the OvBB-decay search are close in energy to the endpoint and will be above the Cherenkov threshold.
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Energy Spectra and the MSW effect.
arXiv:hep-ph/9607226v2
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F. Buccella et. al. Supernova Neutrino
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