You can detect the difference

Sub-nanosecond Detection of Charged Particles with Fast Scintillator and Photon Sensor

October 19th, 2017

El-Mul Technologies, Ltd.

Jonathan Garel

Outline

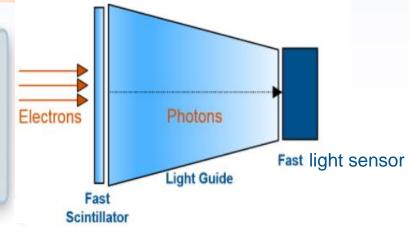
- Background and motivation
 - Applications of charged-particle detection with ns time resolution
 - Limitations of current technologies
- ► El-Mul detection solutions
 - Detector concept and architecture
 - Detector specifications
- Experimental results with various light sensors
 - PMT
 - HPD
- Summary and Outlook

Background

- ► Applications for fast particle detectors (0.5-5 ns time resolution) in numerous fields :
 - Medical Devices
 - Particle Physics
 - Electron Microscopy
 - Time-of Flight Mass Spectrometry (TOF-MS)

Background

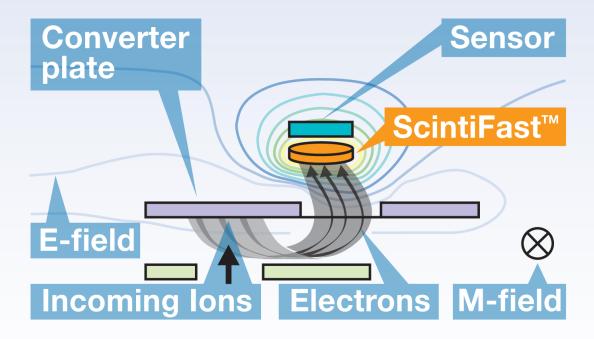
- ► Applications for fast particle detectors (0.5-5 ns time resolution) in numerous fields :
 - Medical Devices
 - Particle Physics
 - Electron Microscopy
 - Time-of Flight Mass Spectrometry (TOF-MS)
- Need for fast detector in SEM to increase throughput (semi-conductor) and reduce charging (semi and analytical tools)
- Need for sub-ns detector in TOF-MS to improve mass resolution for large molecules ($\Delta t/t \propto \Delta m/m$)



Existing Detectors and their Limitations

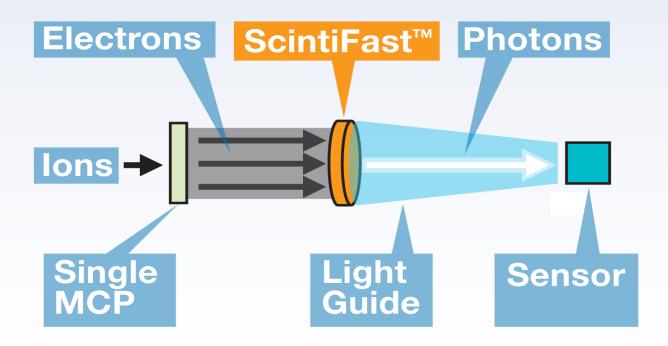
Detector	Limitation	
Microchannel Plate (MCP)	Low fill factorShort lifetimeHV electronics	
Electron Multiplier (discrete dynodes)	HV electronicsContamination	
Plastic scintillator & light sensor	Short lifetime	

El-Mul Solution:


fast inorganic scintillator
SCINTIFASTTM + light sensor

El-Mul TOF Detector Configurations

► MTOFTM

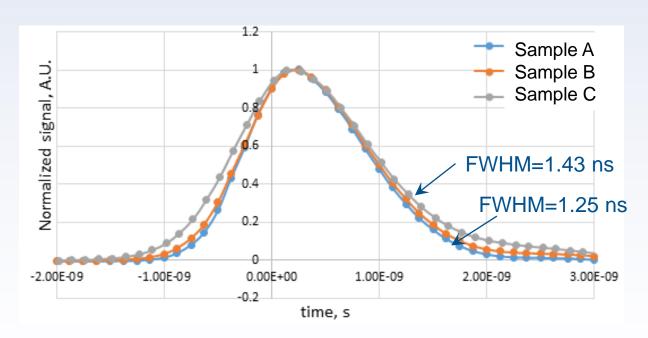


- Electrons directed to scintillator by ExB field
- Near 100% detection efficiency (depends on convertor efficiency)
- Switchable polarity
- Cost-effective, high lifetime (no MCP)

El-Mul TOF Detector Configurations

OptimaxTM

- High Gain
- Switchable polarity

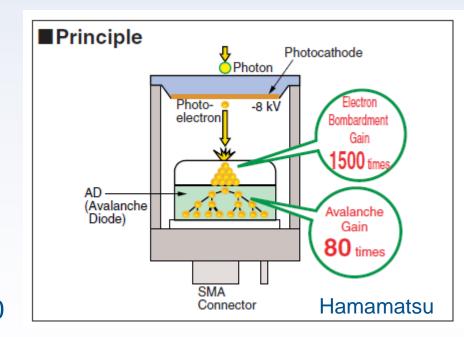

Detector Main Specifications

Parameter	Ideal	Compromise	Comments
Temporal resolution (Pulse FWHM)	<0.5 ns	<1.0 ns	for TOF detector; <5 ns for fast SEM detectors
Gain	>500,000	>50,000	ideally detector can read single ion signal without MCP nor additional electronics
Dynamic range (pulse mode)	single ion to 1,000	single ion to few 100's	
Average output current	>100 μA	>50 μA	
Sensor photocathode output for single ion input	>5 ph-e	>4 ph-e	to discriminate real signal from spontaneous emission

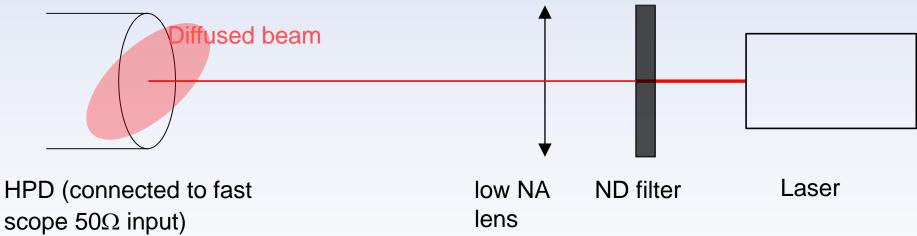
Scintillator response with PMT

Scintillator measured with Hamamatsu's PMT9880

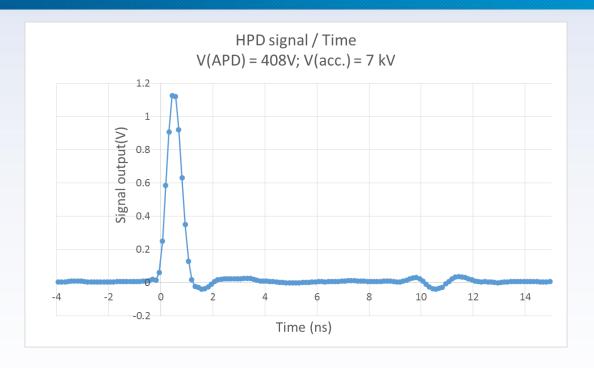
► PMT9880 FWHM: 1.2 ns → Time resolution limited by PMT response


Need for faster light sensor

HPD characteristics

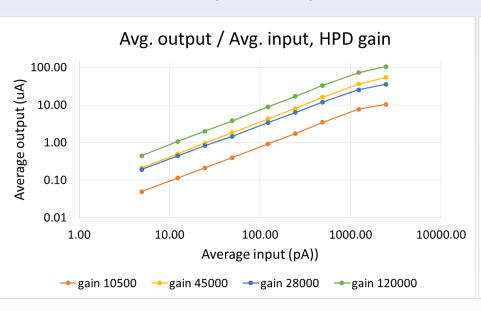

R106467U-06 (Hamamatsu)

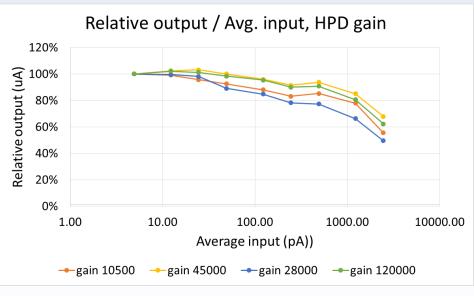
- Nominal FWHM: 650 ps
- Maximum gain 120,000
 - 6 mV output on 50 Ω for single ion input (assuming 4 ph-e per ion)
- Low gain fluctuations
- Dynamic range: see below
- Effective area smaller than PMT9880


HPD evaluation with ps laser

- ► Laser wavelength: 635 nm → QE ~0.5% for HPD
- ▶ Pulse width: 80 ps typical, 100 ps max. << HPD pulse width
- ► Tunable repetition rate 20 kHz to 20 MHz

HPD pulse shape



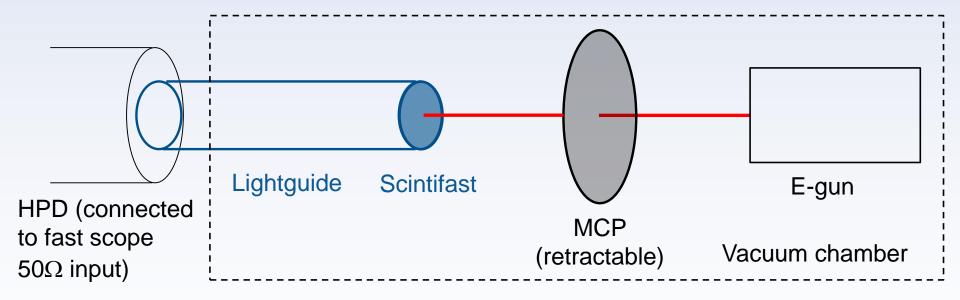

- ► FWHM = 640 ps
- Reproducible pulse shape; ripple at 10 ns probably from cable
- ► Post-peak undershoot ~ 4% (maybe from cable)

HPD Dynamic range (average output)

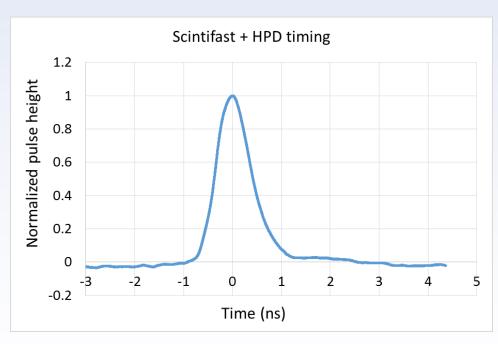
Repetition period varied from 100 ns to 50 μs

- Linearity of average output current is input-limited (not related to gain)
- Linear response up to ~0.4 nA input (i.e. up to ~50 μA output at maximum gain).
- No degradation of timing

HPD Dynamic Range (pulse output)

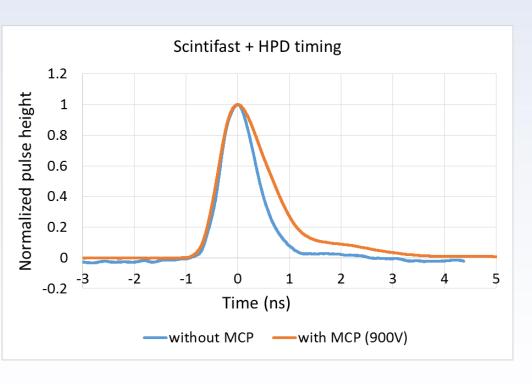

- Input intensity changed with set of filters
 - Calibration using PMT R9880 as reference

- Linearity of pulse output current is output-limited (depends on gain)
 - At gain 18,000: linearity up to ~ 3 orders of magnitude
 - At gain 120,000: linearity up to ~ 2 orders of magnitude
 - No degradation of timing


Scintifast + HPD – experimental setup

- ► E-gun energy up to 10 kV
- ► E-gun current < 1 pA (for single event detection)
- MCP can be removed from beam path at will

Scintifast + HPD timing – without MCP



- E-gun energy: 10 keV
- Scintifast voltage: +3 kV
- ► HPD gain: ~120,000
- ~2.5 ph-e per electron (estimate)
- Average of 1024 traces
- ► FWHM = 0.79 ns

Sub-ns time resolution reached with Scintifast™ and HPD

Scintifast + HPD timing – with MCP

- E-gun energy: -10 kV
- Scintifast voltage: +5 kV
- Average of 1024 traces
- ► FWHM = 1.1 ns

Pulse broadened by MCP

Summary and Outlook

- Detector concept with inorganic fast scintillator and fast photo-sensor was presented
- Sub-ns electron detection with Scintifast[™] and HPD was experimentally proven
- Time resolution is still mainly limited by light sensor
- Next steps:
 - Improve photon yield (scintillator, light collection)
 - HPD + external amplifier (to improve dynamic range)
 - MCP-PMT + external amplifier
 - APD for direct electron detection
 - Si-PM can it be used for sub-ns?

You can detect the difference

Thank You!

Questions and Discussion

