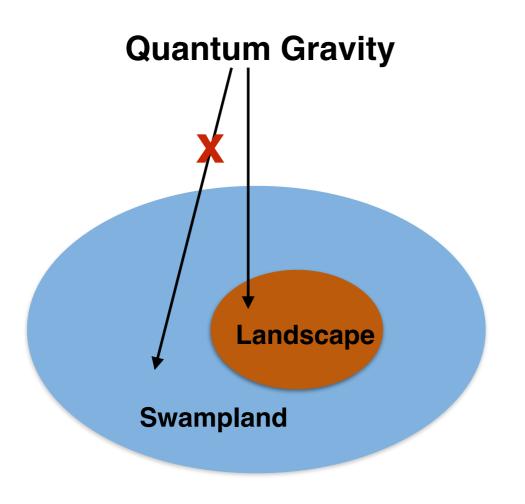
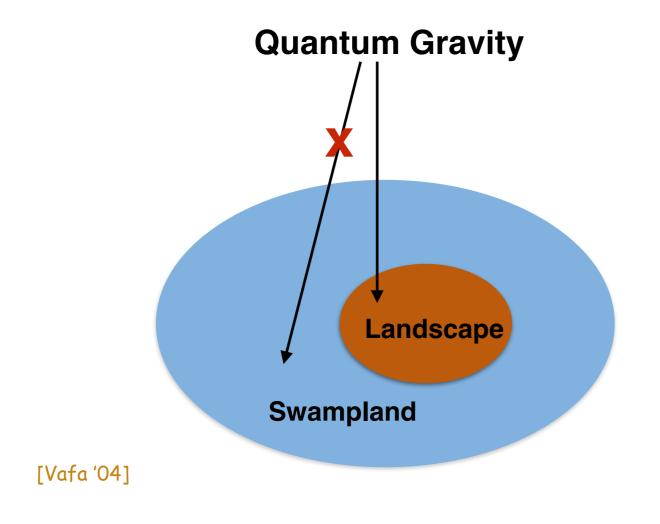
Conjectures from Quantum Gravity


- Exploring the Landscape inside the Swampland -

Florian Wolf

Young Scientists Workshop at Castle Ringberg on July 19, 2017

Swampland vs. Landscape



High energy, more dimensions, e.g. String Theory

Consistent 4 dim low energy effective theory

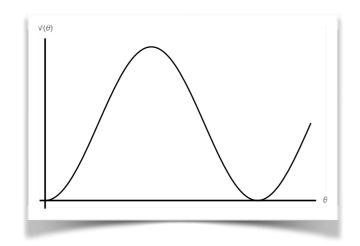
[Vafa '04]

Swampland vs. Landscape

High energy, more dimensions, e.g. String Theory

Consistent 4 dim low energy effective theory

What should 4 dim EFT look like if and only if it arises from Quantum Gravity?

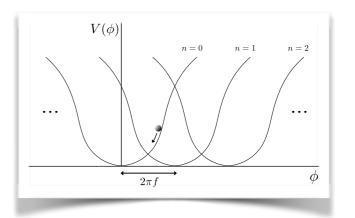

There are (so far) two conjectures deciding between landscape and swampland.

Application to Stringy Large-Field Inflation

Inflaton = axionic modulus from String Theoy

Periodic potential

Trans-planckian axion decay constant: $f>1M_{\rm Pl}$



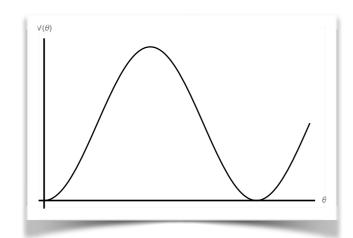
Polynomial potential

Trans-planckian field movement:

$$\Delta \phi > 1 M_{\rm Pl}$$

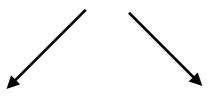
What are axions?

ightharpoonup Scalars equipped with discrete shift symmetry $\phi
ightarrow \phi + 2\pi f$


Some moduli of String Theory are axions

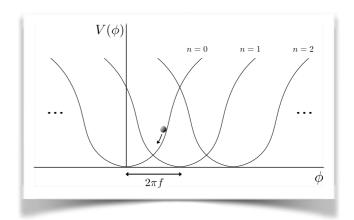
Application to Stringy Large-Field Inflation

Inflaton = axionic modulus from String Theoy


Periodic potential

Trans-planckian axion decay constant: $f>1M_{\rm Pl}$

Constraints from Weak Gravity Conjecture


[Arkani-Hamed, Motl, Nicolis, Vafa, ...many more]

Polynomial potential

Trans-planckian field movement:

$$\Delta \phi > 1 M_{\rm Pl}$$

Constraints from Swampland Conjecture

[Vafa, Ooguri, Palti, Baume, Kläwer, Blumenhagen, Valenzuela, FW]

What are axions?

 \longrightarrow Scalars equipped with discrete shift symmetry $\phi o \phi + 2\pi f$

Some moduli of String Theory are axions

Outline

- 1. Introduction
- 2. Weak Gravity Conjecture
 - Electric and Magnetic Versions
 - Application to Periodic Inflation
- 3. Swampland Conjecture
 - Extension to Axions via Backreaction
 - Critical Distance and Polynomial Inflation
- 4. Conclusion

The Weak Gravity Conjecture (WGC)

A simple observation of our world (and all consistent string compactifications):

Gravity is the weakest force

Promote to general principle

The Weak Gravity Conjecture (WGC)

A simple observation of our world (and all consistent string compactifications):

Gravity is the weakest force

-> Promote to general principle

Consider 4 dim theory with gravity and U(1) gauge field with coupling $g_{
m el}$:

Electric WGC: There must exist a light charged particle Q with

[Arkani-Hamed, Motl, Nicolis, Vafa '06]

$$m_{\rm el} \le g_{\rm el} M_{\rm Pl}$$

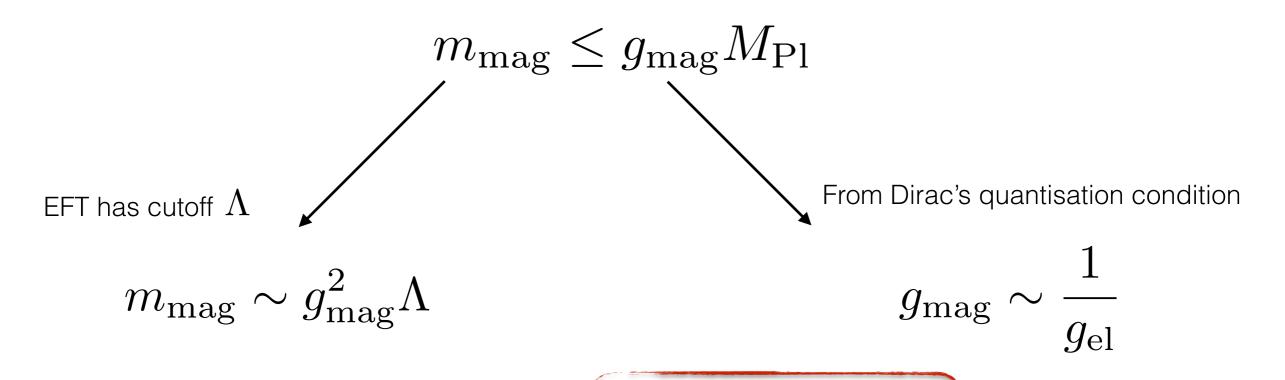
Magnetic Weak Gravity Conjecture

WGC formula should also hold for magnetic monopoles.

Magnetic Weak Gravity Conjecture

WGC formula should also hold for magnetic monopoles.

What are magnetic monopoles?

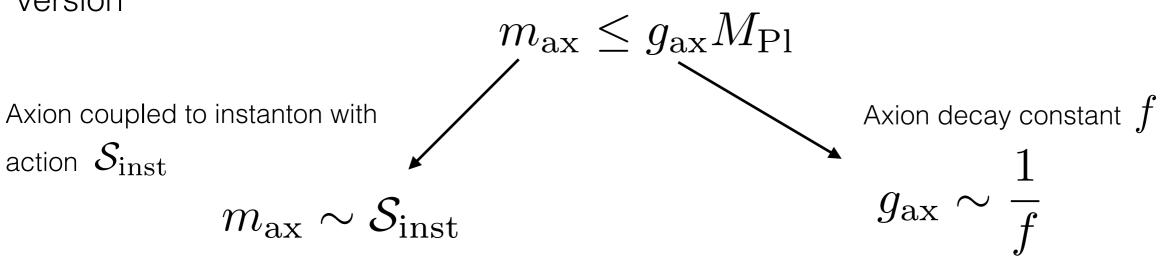

Motivated by electric-magnetic symmetry of Maxwell's Eq.,

Dirac studied particles with net magnetic charge $g_{
m mag}$

Dirac quantisation condition: $g_{\mathrm{el}} \cdot g_{\mathrm{mag}} \in \mathbb{Z}$

Magnetic Weak Gravity Conjecture

WGC formula should also hold for magnetic monopoles.

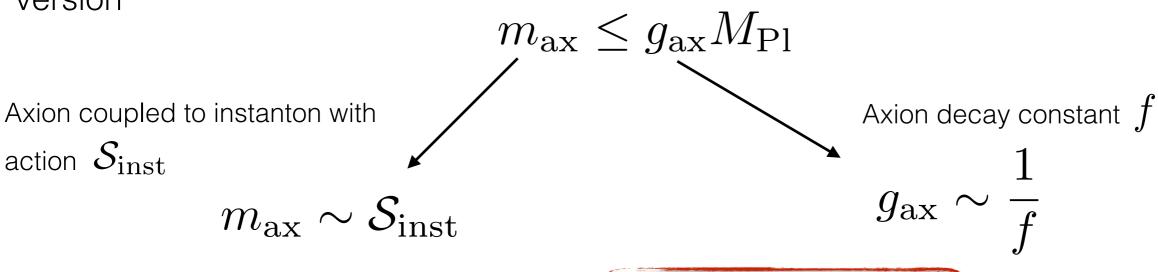


Magnetic WGC:
$$\Lambda \leq g_{
m el} M_{
m Pl}$$

- For small gauge coupling EFT breaks down at low scale!
- Unexpected from 4 dim EFT point of view

WGC for Axions and Inflation

Generalising WGC to p-form gauge fields in arbitrary dimensions leads to axion version



Axionic WGC:

$$f \cdot S_{\text{inst}} \leq M_{\text{Pl}}$$

WGC for Axions and Inflation

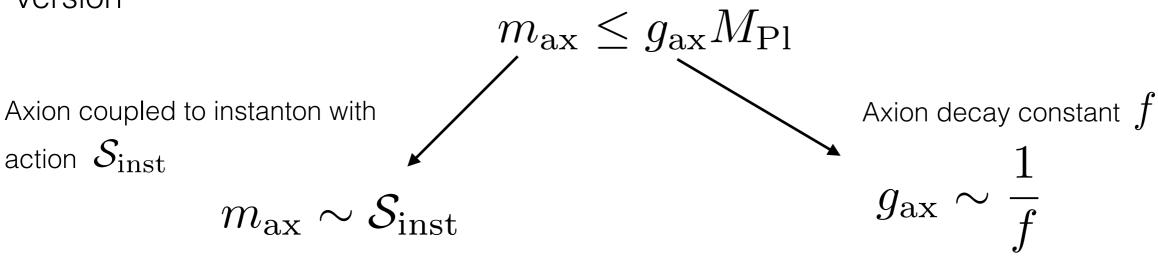
Generalising WGC to p-form gauge fields in arbitrary dimensions leads to axion version

Axionic WGC:

$$f \cdot \mathcal{S}_{\text{inst}} \leq M_{\text{Pl}}$$

Consequence for inflation:

in inflaton potential:


$$V(\theta) \sim e^{-S_{\text{inst}}} \cos\left(\frac{\theta}{f}\right) + \dots$$

ightharpoonup Flat potential for slow-roll inflation requires: $\mathcal{S}_{\mathrm{inst}} > 1$

WGC implies: no trans-planckian axion decay constants

WGC for Axions and Inflation

Generalising WGC to p-form gauge fields in arbitrary dimensions leads to axion version

Axionic WGC:

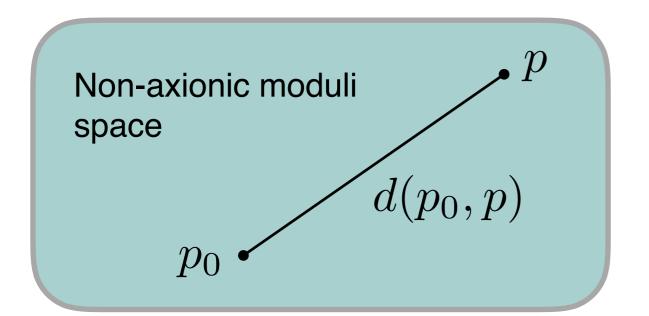
$$f \cdot S_{\mathrm{inst}} \leq M_{\mathrm{Pl}}$$

Consequence for inflation:

instanton generates dangerous terms in inflaton potential:

$$V(\theta) \sim e^{-S_{\text{inst}}} \cos\left(\frac{\theta}{f}\right) + \dots$$

ightharpoonup Flat potential for slow-roll inflation requires: $\mathcal{S}_{\mathrm{inst}} > 1$


WGC implies: no trans-planckian axion decay constants

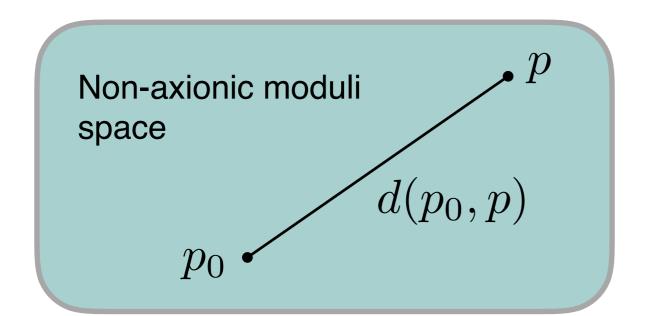
Outline

- ✓ 1. Introduction
- 2. Weak Gravity Conjecture
 - Electric and Magnetic Versions
 - Application to Periodic Inflation
 - 3. Swampland Conjecture
 - Extension to Axions via Backreaction
 - Critical Distance and Polynomial Inflation
 - 4. Conclusion

The Swampland Conjecture

Moduli = free parameter emerging during compactification

For $d(p_0,p) \to \infty$ an infinite tower of massive states becomes exponentially light: [Ooguri, Vafa '04]


$$M \sim M_0 e^{-\alpha d(p_0, p)}$$

for theories in the landscape

ightharpoonup Parameter lpha a priori undetermined

The Swampland Conjecture

Moduli = free parameter emerging during compactification

For $d(p_0,p) \to \infty$ an infinite tower of massive states becomes exponentially light: [Ooguri, Vafa '04]

$$M \sim M_0 e^{-\alpha d(p_0, p)}$$

for theories in the landscape

 \rightarrow Parameter α a priori undetermined

Consequence:

EFT invalid if traversing distance $d(p_0, p) > \frac{1}{\alpha}$ in non-axionic moduli space!

Generate a potential for moduli (s, θ) by turning on background fluxes. Move one axionic modulus θ - called inflaton - from minimum.

Backreaction:

other moduli vev s_{Min} adjust according to inflaton movement.

Generate a potential for moduli (s, θ) by turning on background fluxes. Move one axionic modulus θ - called inflaton - from minimum.

Backreaction:

other moduli vev s_{Min} adjust according to inflaton movement.

$$s_{\rm Min}(\theta) = s_{\rm Min} + \lambda \theta$$

Generate a potential for moduli (s, θ) by turning on background fluxes. Move one axionic modulus θ - called inflaton - from minimum.

Backreaction:

other moduli vev s_{Min} adjust according to inflaton movement.

$$s_{\mathrm{Min}}(\theta) = s_{\mathrm{Min}} + \lambda \, \theta \qquad \xrightarrow{\mathrm{Strong}} \qquad s_{\mathrm{Min}}(\theta) \, pprox \, \lambda \, \theta$$

Generate a potential for moduli (s, θ) by turning on background fluxes. Move one axionic modulus θ - called inflaton - from minimum.

Backreaction:

other moduli vev $s_{
m Min}$ adjust according to inflaton movement.

$$s_{\mathrm{Min}}(\theta) = s_{\mathrm{Min}} + \lambda \, \theta \qquad \xrightarrow{\mathrm{Strong}} \qquad s_{\mathrm{Min}}(\theta) \approx \lambda \, \theta$$

Kinetic term for axion derived from String Theory:

$$\mathcal{L}_{\rm kin}^{\theta} \sim \frac{1}{s_{\rm Min}^2} (\partial \theta)^2$$

Generate a potential for moduli (s, θ) by turning on background fluxes. Move one axionic modulus θ - called inflaton - from minimum.

Backreaction:

other moduli vev $s_{\rm Min}$ adjust according to inflaton movement.

$$s_{\mathrm{Min}}(\theta) = s_{\mathrm{Min}} + \lambda \, \theta \qquad \xrightarrow{\mathrm{Strong}} \qquad s_{\mathrm{Min}}(\theta) \, pprox \, \lambda \, \theta$$

Kinetic term for axion derived from String Theory:

$$\mathcal{L}_{\mathrm{kin}}^{\theta} \sim \frac{1}{s_{\mathrm{Min}}^2} (\partial \theta)^2 \quad \xrightarrow{\text{Strong}} \quad \mathcal{L}_{\mathrm{kin}}^{\theta} pprox \frac{1}{(\lambda \theta)^2} (\partial \theta)^2$$

Canonical normalisation:
$$\mathcal{L}_{\rm kin}^{\theta} \sim \frac{1}{2} \, (\partial \Theta)^2$$
 implies
$$\Theta \sim \exp(\lambda \theta)$$

Canonical normalisation:

$$\mathcal{L}_{\rm kin}^{\theta} \sim \frac{1}{2} (\partial \Theta)^2$$

implies

$$\Theta \sim \exp(\lambda \theta)$$

Consequence:

Some heavy modes (e.g. KK- or string modes) which have been integrated out in EFT, become light:

$$M_{
m heavy} \sim rac{1}{s_{
m Min}(heta)} \quad \stackrel{
m Strong}{\longrightarrow} \quad rac{1}{ heta} \sim e^{-\lambda \Theta}$$

- \longrightarrow EFT invalid above critical distance $\Theta_c \sim rac{1}{\lambda}$
- → Swampland Conjecture for axions [Palti, Baume/Kläwer '16]

What is the Critical Field Range? - An Illustrative Model -

Model on isotropic 6-torus with one D7-brane position modulus.

[Blumenhagen, Valenzuela, FW]

Superpotential:

$$W = \mathfrak{f}_0 + 3\mathfrak{f}_2\,U^2 - h\,S\,U - q\,T\,U - \mu\,\Phi^2$$
 complex structure axio-dilaton Kähler open string modulus

with quantised fluxes $\mathfrak{f},\mathfrak{f}_2,h,q,\mu$

What is the Critical Field Range? - An Illustrative Model -

Model on isotropic 6-torus with one D7-brane position modulus.

[Blumenhagen, Valenzuela, FW]

Superpotential:

$$W = \mathfrak{f}_0 + 3\mathfrak{f}_2\,U^2 - h\,S\,U - q\,T\,U - \mu\,\Phi^2$$
 complex structure axio-dilaton Kähler open string modulus

with quantised fluxes $\mathfrak{f},\mathfrak{f}_2,h,q,\mu$

Kähler potential:

$$K = -3\log(T + \overline{T}) - 2\log(U + \overline{U}) - \log\left[(S + \overline{S})(U + \overline{U}) - \frac{1}{2}(\Phi + \overline{\Phi})^2\right]$$

What is the Critical Field Range? - An Illustrative Model -

Model on isotropic 6-torus with one D7-brane position modulus.

[Blumenhagen, Valenzuela, FW]

Superpotential:

$$W = \mathfrak{f}_0 + 3\mathfrak{f}_2\,U^2 - h\,S\,U - q\,T\,U - \mu\,\Phi^2$$
 complex structure axio-dilaton Kähler open string modulus

with quantised fluxes $\mathfrak{f},\mathfrak{f}_2,h,q,\mu$

Kähler potential:

$$K = -3\log(T + \overline{T}) - 2\log(U + \overline{U}) - \log\left[(S + \overline{S})(U + \overline{U}) - \frac{1}{2}(\Phi + \overline{\Phi})^2\right]$$

Compute the F-term scalar potential for moduli:

$$V_F = \frac{M_{\text{Pl}}^4}{4\pi} e^K \left(K^{I\overline{J}} D_I W D_{\overline{J}} \overline{W} - 3 \left| W \right|^2 \right)$$

What is the Critical Field Range?

- Refined Swampland Conjecture -

Moduli are stabilised at non-susy AdS minimum of the scalar potential with tuneable light axion.

Mass hierarchy reveals contradiction for quantised flux parameters:

$$\Theta_c \sim \frac{M_{\mathrm{mod}}}{M_{\Theta}} \sim \sqrt{\frac{h}{\mu}}$$

$$\longrightarrow \frac{M_{\mathrm{KK,light}}^2}{M_{\mathrm{mod}}^2} \sim \frac{1}{h \, q}$$

with inflaton mass $\,M_{\Theta}$ and average mass of other moduli $\,M_{
m mod}$ and light Kaluza-Klein modes $\,M_{
m KK,light}$

What is the Critical Field Range? - Refined Swampland Conjecture -

Moduli are stabilised at non-susy AdS minimum of the scalar potential with tuneable light axion.

Mass hierarchy reveals contradiction for quantised flux parameters:

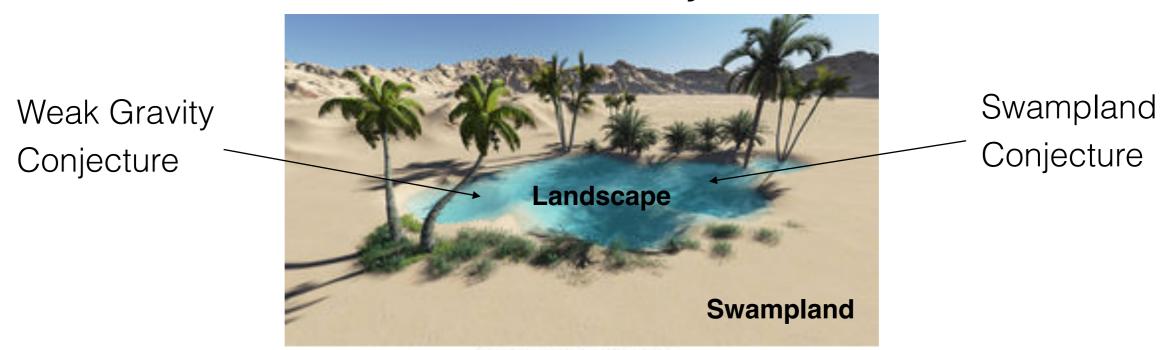
$$\Theta_c \sim \frac{M_{\mathrm{mod}}}{M_{\Theta}} \sim \sqrt{\frac{h}{\mu}}$$

$$\longrightarrow \frac{M_{\mathrm{KK,light}}^2}{M_{\mathrm{mod}}^2} \sim \frac{1}{h \, q}$$

with inflaton mass $\,M_{\Theta}$ and average mass of other moduli $\,M_{
m mod}$ and light Kaluza-Klein modes $\,M_{
m KK,light}$

 \longrightarrow in agreement with Refined Swampland Conjecture $\ \Theta_c \sim \mathcal{O}(1)$

[Palti, Kläwer '16]

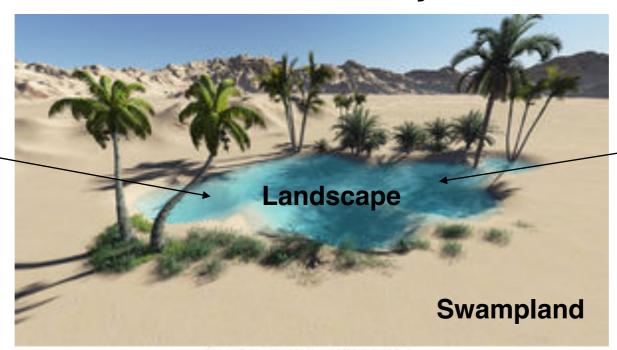

No polynomial large-field inflation 4

Outline

- ✓ 1. Introduction
- 2. Weak Gravity Conjecture
 - Electric and Magnetic Versions
 - Application to Periodic Inflation
- ✓ 3. Swampland Conjecture
 - Extension to Axions via Backreaction
 - Critical Distance and Polynomial Inflation
 - 4. Conclusion

Conclusion

Not every EFT consistent in 4 dim can be consistently uplifted to Quantum Gravity.



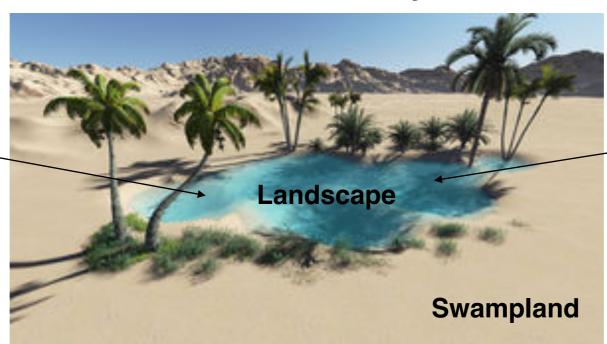
→ Strong constraints on possible models on large-field inflation in String Theory

Conclusion

Not every EFT consistent in 4 dim can be consistently uplifted to Quantum Gravity.

Swampland Conjecture

Strong constraints on possible models on large-field inflation in String Theory


Outlook:

- Proof of conjectures
- Can one rule out large-field inflation in String Theory?
- Multi-axion scenario

Conclusion

Not every EFT consistent in 4 dim can be consistently uplifted to Quantum Gravity.

Weak Gravity Conjecture

Swampland Conjecture

→ Strong constraints on possible models on large-field inflation in String Theory

Outlook:

- Proof of conjectures
- Can one rule out large-field inflation in String Theory?
- Multi-axion scenario

