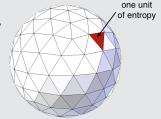

Introduction to AdS/CFT

Who? Nina Miekley

From? University of Würzburg

Where? Young Scientists Workshop 2017

When? July 17, 2017


(Figure by Stan Brodsky)

UNI Intuitive motivation WÜ What is meant by holography?

A theory of **gravity** contains black holes with entropy

Black hole entropy

$$S_{BH} = rac{1}{4G_N} Area_{Horizon}.$$

More generally, the entropy in a spacetime region *A* is bounded by

Bekenstein bound

$$S(A) \leq \frac{1}{4G_N} Area(\partial A),$$

 \Rightarrow bound on # *DoFs* in $A \propto S(A)$.

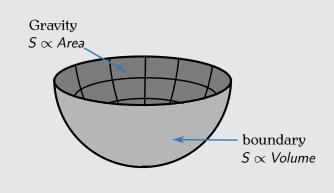
(Bekenstein 1972, 1981)

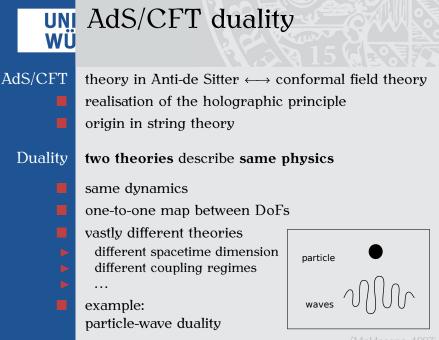
WU

UNI Intuitive motivation What is meant by holography?

In contrast, in a QFT the entropy scales as

 $S(A) \propto Volume(A)$.


Holographic principle

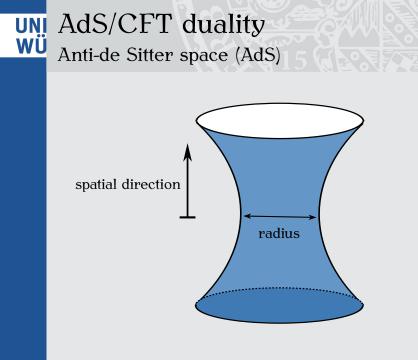

For theory of quantum gravity, the degrees of freedom in a region A can be described by a 'conventional' theory living on its boundary ∂A .

holography: encoding the DoFs in a volume on its boundary

quite general, no explicit construction of dual theory

UNI Intuitive motivation What is meant by holography?

⁽Maldacena, 1997)

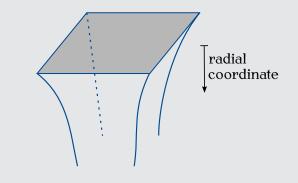

WU Anti-de Sitter space (AdS)

solution to the vacuum Einstein equations with $\Lambda < 0$ space with constant negative curvature R < 0d + 1 dimensional AdS space embedded in d + 2dimensions as

Embedding

$$-(x^0)^2 + \sum_{i=1}^d (x^i)^2 - (x^{d+1})^2 = const. < 0$$

symmetry group: orthogonal group of $\mathbb{R}^{d,2}$ SO(d,2)


UNI
WÜAdS/CFT duality
Anti-de Sitter space (AdS)

metric

$$ds^2 \propto rac{1}{z^2} \left(dz^2 - dt^2 + d\vec{x}^2 \right)$$

radial coordinate z

metric singular at $z = 0 \Rightarrow$ boundary ∂AdS

UNI AdS/CFT duality Conformal field theory

conformal symmetry

extension of Poincare symmetry coordinate transformation such that

$$g_{\mu\nu}(x) \rightarrow e^{2\sigma(x)} \cdot g_{\mu\nu}(x)$$

preserves angles and causality no length-scale, i.e. only dimensionless coupling constants vanishing β-functions

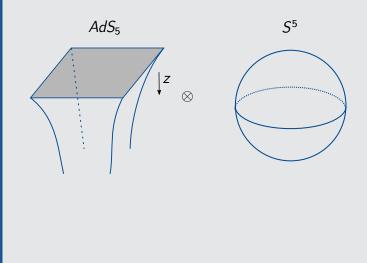
UNI AdS/CFT duality Comparison of Symmetries

SO(d, 2) symmetry of AdS \leftrightarrow conformal symmetry

How can we understand this? coordinate transformation ↓ conformal transformation on boundary

$$ds^2_{AdS} \propto rac{1}{z^2} \left(dz^2 + \hat{g}_{\mu
u} dx^\mu dx^
u
ight)$$

AdS metric fixes boundary metric only up to conformal factor:


$$ds_{\partial AdS}^{2} = \lim_{z \to 0} \omega(z, t, \vec{x}) \ ds_{AdS}^{2}|_{z=const}$$

 \rightarrow 'defining function' $\omega(z, t, \vec{x})$, second order zero at the boundary

Boundary metric

	AdS/CFT duality			
WU	Example: $\mathcal{N} = 4$ SYM theory, $d = 4$			
	supersymmetric Yang-Mills theory			
	adjoint DoFs with gauge group $SU(N)$			
field content	one gauge field four Weyl fermions → in adjoint rep. six (real) scalars			
	dimensionless coupling-constant gyM			
	$\mathcal{N} = 4$: number of supersymmetries			
	1			
	string theory on			
bulk	$AdS_5 \times S^5$			
geometry				
	compactify $S^5 \rightarrow$ effective theory in five dimensions			
	symmetry $SO(6) \longleftrightarrow$ additional $\mathcal{N} = 4$ SUSY			

UNI AdS/CFT duality Example: $\mathcal{N} = 4$ SYM theory

UNI WÜ	AdS/CFT duality Example: $\mathcal{N} = 4$ SYM theory			
	dictionary:			
	$g_{YM}^2 \propto { m string \ coupling}$ $\lambda = g_{YM}^2 N \propto { m string \ length^{-4}}$			
strongest form	N, λ arbitrary	\longleftrightarrow	quantum string theory	
strong form	$N ightarrow\infty$, λ arbitrary	\longleftrightarrow	classical string theory, only tree level diagrams	
weak form	$N \rightarrow \infty$, λ large	\longleftrightarrow	point-particle limit, classical field theory	

UNI AdS/CFT duality How does this work?

I promised you a one-to-one map:

Fieldoperator map

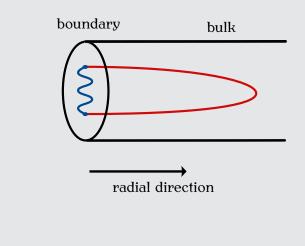
CFT operator \emptyset \longleftrightarrow AdS field φ with
mass m $x \rightarrow \lambda x$ $m^2 \propto \Delta(\Delta - d)$ $\emptyset(x) \rightarrow \lambda^{-\Delta} \emptyset(x)$ $m^2 \propto \Delta(\Delta - d)$ near-boundary expansion:

(Witten, 1998; Gubser, Klebanov, Polyakov 1998)

UNI AdS/CFT duality How does this work?

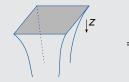
We identify the partition functions on both sides

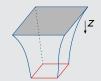
GKP-Witten relation


$$Z_{CFT}[\varphi_{(0)}] = Z_{AdS}[\varphi]$$
$$= \exp^{iS_{AdS}[\varphi]},$$

where $\varphi_{(0)}$ is the source of the operator \emptyset .

$$\langle \mathcal{O}_1(x_1)\cdots \mathcal{O}_n(x_n)\rangle = \frac{1}{i^n} \frac{\delta^n Z_{AdS}}{\delta \varphi^1_{(0)}(x_1) \varphi^n_{(0)}(x_n)}$$


(Witten, 1998; Gubser, Klebanov, Polyakov 1998


UNI AdS/CFT duality How does this work?

UNI Generalisations Finite temperature

finite temperature \longleftrightarrow black hole

thermodynamics black hole thermodynamics temperature entropy black hole thermodynamics Hawking temperature Bekenstein entropy ...

Generalisations

different dimensions:

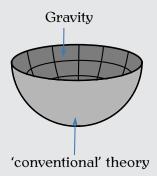
conformal field theory in *d*-dimensions \uparrow theory in Anti-de Sitter space in *d* + 1 dimensions

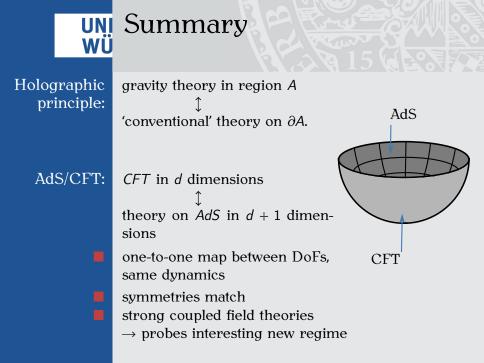
fundamental degrees of freedom

string theory

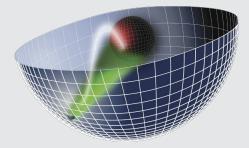
highly symmetric theories

additional compact space


alternative:


tailor gravity background to desired properties

UNI Summary


Holographic principle:

gravity theory in region A \uparrow 'conventional' theory on ∂A .

Thank you for your attention

