Search for Dark Matter in the Mono-Higgs Channel with the ATLAS Detector

Rainer Röhrig

Max-Planck-Institut für Physik

IMPRS Young Scientist Workshop Ringberg Castle 18th July 2017

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Search for Dark Matter with the ATLAS Detector

ArAgait

- Dark Matter (DM) particles (χ) escape the detector undetected
 - (no interaction with the detector material like neutrinos)
- Search for DM particles by looking for:
 - a SM particle recoiling against DM
 - ▶ large imbalance of energy in the transverse plane (E_T^{miss}) due to DM
- \Rightarrow Typical DM search: $E_{\rm T}^{\rm miss}$ + X (X = jet/ $\gamma/W/Z/Higgs$ boson)

Search for Dark Matter with the ATLAS Detector

- Dark Matter (DM) particles (χ) escape the detector undetected (no interaction with the detector material - like neutrinos)
- Search for DM particles by looking for:
 - a SM particle recoiling against DM
 - large imbalance of energy in the transverse plane (E_{T}^{miss}) due to DM
- \Rightarrow Typical DM search: $E_{\rm T}^{\rm miss}$ + X (X = jet/ $\gamma/W/Z/$ Higgs boson)

Search for Dark Matter with the ATLAS Detector

- ► Dark Matter (DM) particles (*χ*) escape the detector undetected (no interaction with the detector material - like neutrinos)
- Search for DM particles by looking for:
 - a SM particle recoiling against DM
 - large imbalance of energy in the transverse plane (E_{T}^{miss}) due to DM
- \Rightarrow Typical DM search: $E_{\rm T}^{\rm miss}$ + X (X = jet/ $\gamma/W/Z/$ Higgs boson)

Jet or vector boson is produced via initial state radiation: mono-X

Higgs boson is directly involved in the production mechanism: mono-Higgs

The mono-Higgs channel is complementary to the mono-X channels with initial state radiation

Search for Dark Matter in the Mono-Higgs Channel

Search for DM in the Mono-Higgs $(b\bar{b})$ Channel

- ► Search for events with large E_{T}^{miss} in association with the SM Higgs boson $(h \rightarrow b\bar{b})$
- \Rightarrow Signatur: 2 *b*-tagged jets, $m_{bb} \approx 125$ GeV and large $E_{\rm T}^{\rm miss}$

Simplified signal model: Z'-2-Higgs-dublet-model (2HDM) (type-II) (arXiv:1402.7074)

- Massive mediators:
 - Z' from additional U(1)_{Z'} symmetry
 - A is pseudo-scalar boson from extended Higgs sector (h, H, A, H^-, H^+)
- DM pair production, with χ a Dirac fermion

 $\begin{array}{c|c} 2 \text{ b-jets} & \blacktriangleright & \frac{\text{Free model parameters:}}{m_A, m_{Z'}, m_{\chi}, \tan \beta, g_{Z'}} \\ & \Rightarrow & m_{\chi} = 100 \text{ GeV, } \tan \beta = 1, \\ & g_{Z'} = 0.8, \ \mathcal{BR}(A \to \chi \bar{\chi}) = 100 \ \% \\ & \Rightarrow \ \text{Scan in } (m_A, m_{Z'}) \text{ plane} \\ & (m_A > 2 \cdot m_{\chi}) \end{array}$

- Higgs boson and DM are produced back-to-back
 - Due to production mechanism: Higgs boson is boosted ($p_{\rm T}^{\rm Higgs} \approx E_{\rm T}^{\rm miss}$)

- Higgs boson and DM are produced back-to-back
 - Due to production mechanism: Higgs boson is boosted ($p_T^{\text{Higgs}} \approx E_T^{\text{miss}}$)

- 2 small-R calorimeter jets (anti-k_t R=0.4)
- \Rightarrow Used for *b*-jet identification

- Higgs boson and DM are produced back-to-back
 - Due to production mechanism: Higgs boson is boosted ($p_T^{Higgs} \approx E_T^{miss}$)

- 2 small-R calorimeter jets (anti-k_t R=0.4)
- \Rightarrow Used for *b*-jet identification

- ≥ 1 large-R calorimeter jet (anti-kt R=1.0)
- $\blacktriangleright \geq$ 1 sub-jets (R=0.2) builed from tracks
- \Rightarrow Used for *b*-jet identification

$$\Delta R = \sqrt{\Delta \phi^2 + \Delta \eta^2}$$

- Higgs boson and DM are produced back-to-back
 - Due to production mechanism: Higgs boson is boosted ($p_T^{\text{Higgs}} \approx E_T^{\text{miss}}$)

- 2 small-R calorimeter jets (anti-k_t R=0.4)
- \Rightarrow Used for *b*-jet identification

- ≥ 1 large-R calorimeter jet (anti-kt R=1.0)
- $\blacktriangleright \geq$ 1 sub-jets (R=0.2) builed from tracks
- \Rightarrow Used for *b*-jet identification

Variable of interest for reconstructing the Higgs boson candidate mass:

Invariante mass of the two-b-tagged jets with the highest $p_{\rm T}$

 $\Delta R = \sqrt{\Delta \phi^2 + \Delta \eta^2}$

Invariant mass of the large-R jet with the highest $\rho_{\rm T}$ and b-tagged sub-jets

Resolved regime

Merged regime

$$E_{\mathrm{T}}^{\mathrm{miss}} = 213 \; \mathrm{GeV}$$

 $m_{jj} = 120 \; \mathrm{GeV}$

 $E_{\mathrm{T}}^{\mathrm{miss}} = 694 \; \mathrm{GeV}$ $m_J = 106 \; \mathrm{GeV}$ Rainer Röhrig 6/18

NB: 1 *b*-tag region is also used to recover some *b*-tag inefficiencies

Background Processes

55 %

30 %

10 %

 $rac{tar{t}}{Z}$ + jets W + jets

$W(ightarrow \ell u)+$ Jets:

- *E*_T^{miss} from leptonic *W* decay (*l* might not be reconstructed)
- Jets from gluon splitting

 Other backgrounds: SM Vh, diboson, single top and multijet background Templates of the different backgrounds are build from Monte Carlo (MC) simulation

Main backgrounds:

 $t\bar{t}, Z(\rightarrow
u
u) + jets and <math>W(\rightarrow \ell
u) + jets$

$t\bar{t}$ production:

- E_T^{miss} from leptonic W decay (*l* might not be reconstructed)
- $\blacktriangleright \geq 2b$ -Jets

Z(ightarrow u u) + jets:

- high E_T^{miss} from neutrinos (smaller contribution from Z(→ ττ))
- Jets from gluon splitting

Results of the Signal Region (SR) - 2 b-Tagged Jets

- Main backgrounds: $t\bar{t}, Z(\rightarrow \nu\bar{\nu}) + jets and W(\rightarrow \ell\nu) + jets$
- Data / MC agreement looks fine within uncertainties
- But can we do better?
- \Rightarrow Introduce control regions for the dominant background processes

Idea of a Control Region (CR)

- > A background-enriched region to estimate a certain background in the SR
- Apply the same base selection in SR and CR
- \Rightarrow Similar phase space
- But SR and CR orthogonal to be statistically independent:
 - E.g. 0, 1 or 2 lepton selection
- $\Rightarrow\,$ Can be modelled by separate PDFs, and thus be combined into one simultaneous fit to data
- \Rightarrow Finally extract the right background normalisation

Backgrounds are estimated from Monte Carlo simulation, with scale factors (where necessary) derived in control regions

Control Regions

- \Rightarrow Two bins for the two background processes
- \Rightarrow One single bin of m_{ii}/m_I for normalization only

Background Estimation

- \blacktriangleright Binned profile-likelihood fit: simultaneously of all SR and CRs to data
- \Rightarrow Extract the right normalizations of the main backgrounds
- ▶ 4 bins of $E_{\rm T}^{\rm miss}$ are used to have a better signal / background ratio
- 1 / 2 b-tag region

- Freely floating parameters in the fit:
 - ▶ 3 normalisations: Z + jets, W + jets and $t\bar{t}$
 - signal strength μ

$$\begin{split} E_{\mathrm{T}}^{\mathrm{miss}} &= |\vec{\mathsf{E}}_{\mathrm{T}}^{\mathrm{miss}}| \\ E_{\mathrm{T}}^{\mathrm{miss}}(1\mu - \mathit{CR}) &= |\vec{\mathsf{E}}_{\mathrm{T}}^{\mathrm{miss}} + \vec{\mu}| \\ E_{\mathrm{T}}^{\mathrm{miss}}(2\ell - \mathit{CR}) &= |\vec{\ell}_{1} + \vec{\ell}_{2}| \end{split}$$

Brand new results: 5th of July Using 2015 + 2016 Data (36.1 fb⁻¹) arXiv: 1707.01302, submitted to PRL

Results - 2 b-Tagged Jets

Much better data / MC agreement after the fit! No significant deviation from the SM prediction.

Results - XS Limits - Fixed m_A Mass

Simplified signal model: Z'-2HDM

- Cross-section limits translated into $(m_A, m_{Z'})$ plane
- ▶ Excluding *m_A* up to 0.6 TeV
- Excluding $m_{Z'}$ up to 2.6 TeV

- After the discovery of the Higgs boson in 2012, the search for Dark Matter is one of the most important topics of the LHC physics program
- The LHC is in particular competitive in the low DM mass region and provides complementary DM results
- \blacktriangleright The mono-Higss $(h \rightarrow b \bar{b})$ channel can directly probe the DM production mechanism
- More data will be collected this year, and hopefully the discovery of DM at the LHC is around the corner

- After the discovery of the Higgs boson in 2012, the search for Dark Matter is one of the most important topics of the LHC physics program
- The LHC is in particular competitive in the low DM mass region and provides complementary DM results
- \blacktriangleright The mono-Higss $(h \rightarrow b \bar{b})$ channel can directly probe the DM production mechanism
- More data will be collected this year, and hopefully the discovery of DM at the LHC is around the corner

Thank You!

Backup

Rainer Röhrig 1/15

Range in	$\sigma_{\mathrm{vis},h+\mathrm{DM}}^{\mathrm{obs}}$	$\sigma_{\mathrm{vis},h+\mathrm{DM}}^{\mathrm{exp}}$	$\mathcal{A} \times \varepsilon$
$E_{\mathrm{T}}^{\mathrm{miss}}$ [GeV]	[fb]	[fb]	[%]
[150, 200)	19.1	$18.3^{+7.2}_{-5.1}$	15
[200, 350)	13.1	$10.5^{+4.1}_{-2.9}$	35
[350, 500)	2.4	$1.7_{-0.5}^{+0.7}$	40
$[500,\infty)$	1.7	$1.8\substack{+0.7\\-0.5}$	55

$$\sigma_{
m SI} pprox 6.9 \cdot 10^{-41} \ {
m cm}^2 \cdot \left(rac{g_{ggDM}}{0.25}
ight)^2 \cdot \left(rac{1 {
m TeV}}{M_{med}}
ight)^4 \cdot \left(rac{\mu_{n\chi}}{1 {
m GeV}}
ight)^2$$

Results

Rainer Röhrig 7/15

Results - CR - 2 b-Tagged Jets

Rainer Röhrig 8/15

Results - CR - 2 b-Tagged Jets

Rainer Röhrig 9/15

800

E^{miss}_T [GeV]

Data Z+jets tt + single top

Diboson SM Vh

NN Background Uncertainty

.....

 $\begin{array}{c} \text{Background Uncertainty}\\ \text{Pre-fit Background}\\ \text{h} + \text{E}_{T}^{\text{miss}} \stackrel{\text{2-2HDM}}{\text{2-2HDM}}\\ \text{m}_{z} = 1.4 \text{ TeV}, \text{m}_{A} = 0.6 \text{ TeV}\\ \sigma_{\text{Signal}} = 3.75 \text{ fb} \end{array}$

Multijet

Rainer Röhrig 11/15

Rainer Röhrig 12/15

Rainer Röhrig 13/15

		Danas in D	miss ro-M				
Category	Kange in $E_{\rm T}^{\rm mas}$ [GeV]						
Cutogory	[150, 200)	[200, 350)	[350, 500)	[500,∞)			
$t\bar{t}$ +single top	5820 ± 170	2160 ± 76	69.2 ± 4.8	3.17 ± 0.66			
W+jets	973 ± 170	605 ± 110	46.6 ± 8.7	6.1 ± 1.2			
Z+jets	2940 ± 190	2070 ± 130	217 ± 13	27.0 ± 2.4			
Diboson	247 ± 30	205 ± 25	25.8 ± 3.2	3.65 ± 0.62			
SM $Vh(b\bar{b})$	56 ± 17	51 ± 18	6.9 ± 2.6	1.54 ± 0.64			
Multijet	448 ± 120	59 ± 46	negligible	negligible			
Total Bkg.	10500 ± 100	5150 ± 62	366 ± 12	41.4 ± 3.3			
Data	10 514	5 160	366	41			
Exp. signal	0.3	5.8	17.7	16.4			

Category -	Range in $E_{\rm T}^{\rm miss}$ [GeV]					
	[150, 200)	[200, 350)	[350, 500)	[500,∞)		
<i>tt</i> +single top	23060 ± 530	13190 ± 310	614 ± 32	53.7 ± 5.1		
W+jets	10500 ± 1300	6620 ± 810	458 ± 58	84.5 ± 14		
Z+jets	20000 ± 1300	16200 ± 1100	1800 ± 120	383 ± 40		
Diboson	644 ± 82	605 ± 79	87.8 ± 12	25.0 ± 3.6		
SM $Vh(b\bar{b})$	40 ± 13	39 ± 14	6.3 ± 2.3	1.8 ± 0.7		
Multijet	2310 \pm 240	80 ± 99	negligible	negligible		
Total Bkg.	56570 ± 240	36710 ± 190	2965 ± 42	548 ± 19		
Data	56611	36 584	3015	551		
Exp. signal	0.2	5.0	18.2	16.9		