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1) Quantum fields in curved spacetime

2) The Unruh effect

3) Quantum black holes and Hawking radiation

4) Problems with global symmetries



Quantum Gravity?
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‣ Collider physics described by (perturbative) quantum field theory

‣ Prototype: scalar field theory

‣ Dictated by unification of quantum mechanics

‣ With special relativity
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Quantum Gravity?
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‣ General relativity described by highly non-linear, complicated Einstein 
field equations for the metric       (spacetime geometry)

‣ Naive treatment as perturbative QFT runs into big problems (non-
renormalizability)
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Gravity has to be quantized - we just don’t know for sure how!

R � d(g�1dg) + (g�1dg)2

For this talk we will remain ignorant!
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Necessity of Quantization
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Rµν − 1
2Rgµν = 8πG

c4 Tµν{ {

gravity matter

‣ Why not just quantize RHS?

‣ Superposition states: gravitational field is “average” over possible 
outcomes. Upon measurement we have collapse and discontinuous 
change of the gravitational field.

‣ Violates locality, Lorentz invariance, also                    , which is 
inconsistent with the proposed equation.
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Quantum Fields in Curved 
Spacetime!
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‣ Study quantum fields in classical gravity background (e.g. black hole)

‣ Surprisingly, leads to non-trivial, robust insights about quantum gravity

‣ Works as long as curvature is not too strong (black hole singularity)
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The Vacuum State
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‣ QFT vacuum: state of lowest energy

‣ Equivalently killed by annihilation operators for every particle

‣ Lorentz symmetry: inertial observers agree on vacuum

‣ In fact only true for inertial observers

‣ In general relativity: no privileged class of observers!

‣ Mathematically: creation/annihilation operators of two observers related 
by Bogolyubov transformation

Ĥ|Ω⟩ = Emin|Ω⟩

âI |Ω⟩ = 0

The definition of “vacuum” or “particle” in GR is inherently ambiguous
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The Unruh Effect
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‣ Equivalence Principle: gravity is locally equivalent to accelerated frame 
of reference

‣ For a qualitative picture, we thus consider constantly accelerated 
observer (constant proper acceleration)

‣ Calculate expectation value of number density 
operator of the accelerated observer A in 
Minkowski vacuum 

‣ This is precisely Planck’s law! A sees radiation!
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Quantum Black Holes
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‣ Classical black hole: nothing can escape from within the horizon

‣ Hawking showed: vacuum of collapse that of free falling observer

‣ Observer at infinity has relative acceleration and sees Hawking radiation

‣ Black holes lose mass and evaporate after all!

‣ Black hole thermodynamics:
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Some Ballpark Figures
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‣ Both Unruh and Hawking radiation are hard to measure

‣ Measuring Hawking radiation requires getting close to small black 
holes - only option: micro black holes at accelerators

‣ For a 1K black hole we are looking at 

‣ Unruh radiation is in principle easy to measure but the amount of 
acceleration is huge, again for 1K we need

M ≃ 10−8M⊙

α ≃ 1020
m

s2



Global Symmetries and Black Holes
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‣ Imagine a world with gravity, matter and a continuous global symmetry 
(no gauge symmetry! no associated force!)

‣ Noether’s theorem guarantees associated charge, e.g. baryon number

‣ To avoid subtleties, assume single particle species      interacting only 
through gravity and with charge    under such         symmetry

‣ By collapsing    of these to a black hole with mass           and waiting until 
it evaporates to mass     we get black holes with arbitrary charge, all of 
the same mass/energy
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No Global Symmetries
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+

‣ Important: Hawking radiation contains same number of + and - charged 
particles, so black hole cannot lose charge

‣ If we let the black hole completely evaporate, charge is gone!

‣ We have created a process

   which explicitly violates charge conservation

{ { {

N · (m, q) (N ·m−∆E,N · q) (m,N · q)

Q = Nq Q = 0



No Global Symmetries: Loophole
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‣ Hawking calculation only valid until 

‣ What if evaporation stops and remnant forms?

‣ No-Hair theorem: black holes with different     but same      are 
indistinguishable from outside

‣ Since we can construct BH with arbitrary     for a fixed      and thus 
energy, we see that black holes in the theory have infinite microcanonical 
entropy!

‣ Leads to various inconsistencies, violates entropy bounds!

MBH ≃ Mp

Q M

Q M



Bonus: The Stringy Version
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‣ We believe string theory is a consistent theory of quantum gravity

‣ Should rather forbid global symmetries then

‣ Explicit mechanism: perturbative string theory is described by two 
dimensional field theory on the string world sheet

‣ Introducing a global symmetry on the world-sheet magically gives rise to 
a gauge symmetry with associated gauge bosons in the spacetime!
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Bonus: The AdS/CFT version
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‣ Reminder: AdS/CFT is an isomorphism of two very different theories

1) Quantum gravity in Anti-de-Sitter (AdS) space

2) Conformal field theory (non-gravitational) on the AdS boundary

AdS

CFT

global symmetry in CFT gauge symmetry in AdS

global symmetry in AdSContradiction!



Conclusion
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‣ Even if ignorant about the details of quantum gravity, we can gain non-
trivial insights by using usual QFT techniques in curved backgrounds

‣ Accelerated observers experience Unruh radiation

‣ A different manifestation of this is Hawking radiation of black holes

‣ Combining global symmetries with these expectations leads to 
paradoxes

‣ Hence global symmetries are not allowed in quantum gravity and thus 
nature!

‣ String theory seems to obey this!



Thank You


