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L Brief Introduction into Sterile Neutrinos

What is a sterile neutrino?
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m Neutrinos observed only as left-handed states (chirality!).

m Potential right-handed partners would carry no charge under
SU(3). x SU(2), x U(1)y = dubbed sterile neutrinos
(usually denoted N or Ng ;).
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L Brief Introduction into Sterile Neutrinos

What is a sterile neutrino?
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m Neutrinos observed only as left-handed states (chirality!).

m Potential right-handed partners would carry no charge under
SU(3). x SU(2), x U(1)y = dubbed sterile neutrinos
(usually denoted N or Ng ;).

m Number of right-handed states a priori arbitrary.
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L Brief Introduction into Sterile Neutrinos

Why are sterile (keV-scale) neutrinos interesting?

Seesaw mechanism as elegant mechanism to explain observed
non-zero active neutrino masses

Can play substantial role in leptogenesis and pulsar kicks
Can be (a part of) the cosmic DM

If so: would have a rather clear signal for sin? (20) # 0:

Decay N — v+ gives photons with E, = my/2.
Claim for a signal @ E, = 3.55keV in 2014, highly disputed & still

unresolved issue
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L Production Templates for Dark Matter

Production mechanisms for Dark Matter

m Thermal freeze-out: DM in thermal contact with SM until
expansion rate exceeds interaction rate.
Qpm ~ (ov) ™t

m Thermal freeze-in: Interaction too weak to ever establish
equilibrium of DM. Occasional production from the plasma
until average energy < mpyr.

Qpm ~ ot

m Decay of parent particles: Highly non-thermal process, parent
P itself can freeze in or out or be a decay product itself.
Qpm = Qpm (opesm; Te)
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How to fill the templates with physical models for SN?

The popular production mechanisms are:
m Dodelson-Widrow production (DW), aka non-resonant
active-sterile conversion (freeze-in), Qpy o sin? (26)
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L Production Mechanisms for Sterile Neutrino Dark Matter

How to fill the templates with physical models for SN?

The popular production mechanisms are:

m Dodelson-Widrew-production (DW), aka non-resonant
active-sterile conversion (freeze-in), Qpyp o sin? (26)

w w
N

m Shi-Fuller production (SF), aka resonant active-sterile
conversion (freeze-in)

m Diluted thermal freeze-out: SU (3) x SU(2), x U(1)y x Gx
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L Production Mechanisms for Sterile Neutrino Dark Matter

How to fill the templates with physical models for SN?

The popular production mechanisms are:

m Dodelson-Widrew-production (DW), aka non-resonant

active-sterile conversion (freeze-in), Qpyp o sin? (26)

w w

m Shi-Fuller production (SF), aka resonant active-sterile
conversion (freeze-in)

]
m DW/SF + late thermalisation in dark sector.

m Decay production via some parent particle, e.g. real scalar
singlet S coupled to Higgs sector.
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L Production Mechanisms for Sterile Neutrino Dark Matter

DW / SF and structure formation

“Tem perature map “of SF (taken from 1601.07553 by A. Schneider)
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L Production Mechanisms for Sterile Neutrino Dark Matter

DW / SF and structure formation |

Constraints from # of MW satellites and Lyman-a-forest (i601.07553).
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L Production Mechanisms for Sterile Neutrino Dark Matter

DW / SF and structure formation |
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A simple model for scalar decay — Lagrangian

m Field content beyond SM: real scalar singlet S and one sterile
neutrino N.

m Lagrangian:
L= ESM—F IN&N + = (8 5) (8’”5) ySWN + hC:| _Vscalar

where

As

Vicalar = M¢¢T¢—7u552+)\¢ (¢T¢)2+ 5442 (ch cb) s2

m Processes for DM production: SS <+ ®® (from plasma)
S — NN
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L The Scalar Decay Model for keV Steriles

A simple model for scalar decay — Lagrangian

m Field content beyond SM: real scalar singlet S and one sterile
neutrino N.
m Lagrangian:

L = Lo+ IN&N + = (8 5) (8’”5) ySWN + hC:| — Vicalar

where

2 )
Vicalar = /~L¢.¢T¢—*M552+)\¢ (d)T(D) + S

54421 (o10) 52
m Processes for DM production: SS < ¢¢ (from plasma)
S — NN
m Mixing sin? # switched off in this model (good approx.,
cf. 1512.05369 (Merle, Schneider, MT)) = Can however be arbitrarily
small, not needed to produce vg
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A simple model for scalar decay — production channels

Production of scalar S from SM d.o.f. depending on whether
T > Tegw (|) // T < Tegw & ms > mh/2 (“) // T < Tegw & ms < m;,/2 (|||)
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L The Scalar Decay Model for keV Steriles

A simple model for scalar decay — production channels

Production of scalar S from SM d.o.f. depending on whether
T > Tegw (|) // T < Tegw & ms > mh/2 (“) // T < Tegw & ms < m;,/2 (|||)
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L The Scalar Decay Model for keV Steriles

A simple model for scalar decay — different mg

Depending on A and mg, different production regimes are relevant:
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Figure: credit: MilleniumSimulation, Cold Dark Matter Simulation
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LA Primer in Cosmic Structure Formation: “Dark Matters”

The Cosmic Web: Far from homogeneous on small scales

Figure: credit: MilleniumSimulation, Cold Dark Matter Simulation

This simulation matches observations very well, except for smallest
scales (Missing Satellites, Too-Big-Too-Fail, Cusp-Core-Problem)
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LA Primer in Cosmic Structure Formation: “Dark Matters”

Where does the structure come from?

m Inflation seeds tiny inhomogeneities in energy density
components.

m Overdensities will grow under self-gravitation.

m Baryonic fluid and photon fluid interact and start accoustic
oscillations.

m After CMB decoupling, fluctuations can grow more easily.

m Velocity dispersion of DM particles partly washes out
structure.

m Everything happens in expanding background.

m First, perturbations grow linearly (solve equations
semi-analytically), then non-linearly (need for N-body
simulations).
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credit: ITC @ University of Zurich
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LA Primer in Cosmic Structure Formation: “Dark Matters”

Simulating the Cosmic Web

“* Velocity distribution mattegs!

credit: ITC @ University of Zurich
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LA Primer in Cosmic Structure Formation: “Dark Matters”

Measuring the cosmic web

Different scales — different techniques:

Wavelength A [h~! Mpc]
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Figure: Small scales probed by Lyman-« forest. (see 1005.1100)
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LA Primer in Cosmic Structure Formation: “Dark Matters”

What is the Lyman-a forest?

m Spectra from distant Quasars get redshifted.

m The mode that has the physical wavelength of the Lyman-«
transition gets absorbed by the hydrogen present at that
redshift (i.e. at a certain distance).

>>> Visual explanation <<

m = many line-of-sight profiles allow for a 3D reconstruction of
densitites.
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LHcvw to assess structure formation

The particle physicist's comfort zone: Ag

Simplest back-of-the-envelope-approach:

)\fs:/to ar ()

prod a (t)

Common classification: Ag < 0.01 Mpc cold,
0.01 Mpc < A\g < 0.1 Mpc warm,
Ats = 0.1 Mpc hot.
Problem: Average might not be a good description, especially for
non-thermal dark matter (more to come...)
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LHcvw to assess structure formation

Leaving the comfort zone

Next step:
m Compute power spectrum P (k) and compare to observations.

m Convetional: normalise to CDM benchmark:

_ P(K)
TRk = Pcow (k)

m Compare to observables like the Lyman-« forest.
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LHz:vw to assess structure formation

Comparing a DM model to observations

A simple but reliable method: the half-mode analysis
(JCAP 1611(038))

CDM baseline
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LHz:vw to assess structure formation

Comparing a DM model to observations

A simple but reliable method: the half-mode analysis
(JCAP 1611(038))

CDM baseline

om(k)

High-power region
consistent with

Lyman-a bound \ . Forbidden

=
4

Tk

Lyman—a bound
(thermal relic with

my=3.3 keV)

Lyman—a bound
(thermal relic with

3.3 keV)

k [h/Mpc] k[h/Mpc]

m If region of high power (i.e. at 72 > 1/2) agrees with
observation, model is considered allowed.
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LHz:vw to assess structure formation

Comparing a DM model to observations

A simple but reliable method: the half-mode analysis
(JCAP 1611(038))

CDM baseline

High-power region
consistent with
yman-a bound

. Forbidden

P(K)/Pcpm(k)

T (k)

Lyman—a bound
(thermal relic with

3.3 keV)

Lyman—a bound
(thermal relic with

my=3.3 keV)

k [h/Mpc] k[h/Mpc]

m If region of high power (i.e. at 72 > 1/2) agrees with
observation, model is considered allowed.

m Potentially problematic: benchmark also dervied assuming
thermal spectrum!
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LHcvw to assess structure formation

Is the whole song and dance necessary?

Can we retune the boundaries of Ai? No, we can't as the average
is not a good estimator!

| =278

P(k)IPcom(k)

) 100
Kk [MPc]
Figure: Mock spectra with identical (x) (by construction) but different
squared transfer function 772,
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LHz:vw to assess structure formation

More advanced methods

The simple half-mode analysis has been tested in 1704.07838 and
in ApJ 836(61) using
m integrated deviation of linear power spectrum from benchmark
derived from Lyman-« data,

m the number of MW subhaloes in comparison to the number of
observed satellites,

m the count of ultra-faint galaxies at redshift z = 6.

= Very close agreement to half-mode analysis found!
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L Structure formation for the SD model

SD model and the half-mode analysis

10750

len (cons.
constrained (res.: i
| — allowed

1070 \

\ <
Querglonre)

toorev— 1] .

195 d
10710010790 10780 10 10700 1073

Higgs portal A

Figure: Constraints from structure formation in the plane A-vs.-y for
ms = 100GeV. Taken from JCAP 1611(038) (Konig, Merle, MT).
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L Structure formation for the SD model

SD model and the half-mode analysis

For other masses mg, the picture looks similar but not identical:
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Figure: For ms = 65 GeV, the 'freeze-out region’ is completely forbidden!
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L Structure formation for the SD model

Half-mode analysis vs. free-streaming

Comparison of the free-streaming approach and the half-mode
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Figure: The free-stremaing approach (with the standard boundaries) is
much more restrictive!
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Figure: Regions in accordance with the count of high-z galaxies. Adapted
from ApJ 836(61) (Menci, Merle, MT et al.).



keV sterile neutrinos and new tests for non-thermal DM candidates

L Structure formation for the SD model

Half-mode analysis vs. refined Ly-a and MW satellite
counts
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Figure: Judgement from MW satellites and refined Ly-a. Note the slight
offset of the crosses from the iso-mass-lines. Adapted 1704.07838
(Murgia, Viel, Merle, Schneider, MT).
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Conclusion

m Cosmic Web is a powerful observable to constrain DM models

m keV sterile neutrinos are theoretically well motivated
candidates for DM. A production process in accordance with
all bounds cannot be trivial.

m Scalar singlet decay is among the most favourable production
mechanisms for sterile neutrino DM.

m New methods for non-thermal DM (half-mode, high-z counts,
MW satellite counts, refined Ly-«r) can capture spectral
analysis and agree quite well. Free-streaming not very reliable
for non-thermal spectra.

m Future experiments like KATRIN-TRISTAN, ECHo, DyNO
will probe the parameter space my-sin (260) in clean lab
environments. They will either find nothing (sensitivity) or put
Standard Cosmology into a lot of trouble.
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Thank you for your attention!



keV sterile neutrinos and new tests for non-thermal DM candidates
L Backup

Backup | — Evolution of abundances vs. evolution of
distribution function

100
Distribution Function (x)=2.67 ettt
CH!’:|07I ﬂ(\huwv
Cr=10""
0.001 .
Particle number
densities for:
10 ™ Crp=10""
2 2 Cr=10""
<) = 0.01
~ i
& L
107° =
107*
10—]2
1015 H 105k . . . H .
0001 0010  0.100 1 10 100 10 0001 0010 0.100 1 10 100

x=p/T

r=mg/T



keV sterile neutrinos and new tests for non-thermal DM candidates
L Backup

Backup | — Evolution of abundances vs. evolution of
distribution function

100
Distribution Function (x)=2.63
Cup=10* /
———————— n
Cr=10"13 N
0.001 N ]
1076 i Particle number
= = ool densities for: B
< i Cyp=10*
T o % Cr=10"%
107*
10—]2
] ﬂk\mm}
10715 H 106 L L L L L i L
0001 0010  0.100 1 10 100 10 0001 0010  0.100 1 10 100

x=p/T r=mg/T



keV sterile neutrinos and new tests for non-thermal DM candidates
L Backup

Backup | — Evolution of abundances vs. evolution of
distribution function

0.100, 100
Distribution Function
Cp=10* z
0001F (o Tig o
"~ ()=394 As(Cr=0)
...... 250 !
107
S w07 S
< =001 Particle number
S i .
& 10°° = densities for:
= Cyp=10*
" Cr=10"*
10 104
10713 ;
i ~therm
-211‘\'
10-! : 10-6 " " . L .
0.001 0010  0.100 1 10 10( 10 0001 0010  0.100 1 10 100

x=p/T r=mg/T



keV sterile neutrinos and new tests for non-thermal DM candidates
L Backup

Backup | — Evolution of abundances vs. evolution of
distribution function

)
Distribution Function (=187 100
=10 N\ | |
Cr=107 250
107 ] . |
i5(Cr=0)
S Particle number l
S = eer
Z 10 g ool densitiesfor: ~ IN_V A
+ i Cup=10*
< il p=10!
) Cr=10
10710 1 0
~therm |
; ) :
10-12 . L . A . 10-6 s
0001 0010 0.100 1 10 100 1001 0.001 0.100 10 1000
x=p/T

r=mg/T



keV sterile neutrinos and new tests for non-thermal DM candidates

L Backup

Backup Il — Effect of DW on scalar decay
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