keV sterile neutrinos and new tests for non-thermal DM candidates IMPRS EPP — Young Scientists' Workshop based on work with many collaborators: (1704.07838, ApJ 836(61), JCAP 1611(038), JCAP 1604(003), JCAP 1506(011))

Maximilian Totzauer

July 18, 2017

1 Brief introduction into Sterile Neutrinos

- 1 Brief introduction into Sterile Neutrinos
- Production Templates for Dark Matter: freeze-out, freeze-in and all that

- 1 Brief introduction into Sterile Neutrinos
- Production Templates for Dark Matter: freeze-out, freeze-in and all that
- 3 Production Mechanisms for Sterile Neutrino Dark Matter

- 1 Brief introduction into Sterile Neutrinos
- Production Templates for Dark Matter: freeze-out, freeze-in and all that
- 3 Production Mechanisms for Sterile Neutrino Dark Matter
- 4 The Scalar Decay Model for keV Steriles

- Brief introduction into Sterile Neutrinos
- Production Templates for Dark Matter: freeze-out, freeze-in and all that
- 3 Production Mechanisms for Sterile Neutrino Dark Matter
- 4 The Scalar Decay Model for keV Steriles
- 5 A Primer in Cosmic Structures

- Brief introduction into Sterile Neutrinos
- Production Templates for Dark Matter: freeze-out, freeze-in and all that
- 3 Production Mechanisms for Sterile Neutrino Dark Matter
- 4 The Scalar Decay Model for keV Steriles
- 5 A Primer in Cosmic Structures
- 6 New approaches to assess structure formation

- Brief introduction into Sterile Neutrinos
- Production Templates for Dark Matter: freeze-out, freeze-in and all that
- 3 Production Mechanisms for Sterile Neutrino Dark Matter
- 4 The Scalar Decay Model for keV Steriles
- 5 A Primer in Cosmic Structures
- 6 New approaches to assess structure formation
- 7 Structure formation in the Scalar Decay Model

- Brief introduction into Sterile Neutrinos
- Production Templates for Dark Matter: freeze-out, freeze-in and all that
- 3 Production Mechanisms for Sterile Neutrino Dark Matter
- 4 The Scalar Decay Model for keV Steriles
- 5 A Primer in Cosmic Structures
- 6 New approaches to assess structure formation
- 7 Structure formation in the Scalar Decay Model
- 8 Conclusion and Outlook

Brief Introduction into Sterile Neutrinos

What is a sterile neutrino?

Neutrinos observed only as left-handed states (chirality!).

Brief Introduction into Sterile Neutrinos

What is a sterile neutrino?

- Neutrinos observed only as left-handed states (chirality!).
- Potential right-handed partners would carry no charge under $SU(3)_c \times SU(2)_L \times U(1)_Y \Rightarrow$ dubbed sterile neutrinos (usually denoted N or $N_{R,i}$).

Brief Introduction into Sterile Neutrinos

What is a sterile neutrino?

- Neutrinos observed only as left-handed states (chirality!).
- Potential right-handed partners would carry no charge under $SU(3)_c \times SU(2)_L \times U(1)_Y \Rightarrow$ dubbed sterile neutrinos (usually denoted N or $N_{R,i}$).
- Number of right-handed states a priori arbitrary.

Brief Introduction into Sterile Neutrinos

Why are sterile (keV-scale) neutrinos interesting?

Seesaw mechanism as elegant mechanism to explain observed non-zero active neutrino masses

Brief Introduction into Sterile Neutrinos

Why are sterile (keV-scale) neutrinos interesting?

- Seesaw mechanism as elegant mechanism to explain observed non-zero active neutrino masses
- Can play substantial role in leptogenesis and pulsar kicks

Brief Introduction into Sterile Neutrinos

Why are sterile (keV-scale) neutrinos interesting?

- Seesaw mechanism as elegant mechanism to explain observed non-zero active neutrino masses
- Can play substantial role in leptogenesis and pulsar kicks
- Can be (a part of) the cosmic DM

Brief Introduction into Sterile Neutrinos

Why are sterile (keV-scale) neutrinos interesting?

- Seesaw mechanism as elegant mechanism to explain observed non-zero active neutrino masses
- Can play substantial role in leptogenesis and pulsar kicks
- Can be (a part of) the cosmic DM
- If so: would have a rather clear signal for $\sin^2(2\theta) \neq 0$:

Decay $N \rightarrow \nu \gamma$ gives photons with $E_{\gamma} = m_N/2$. Claim for a signal @ $E_{\gamma} = 3.55 \text{ keV}$ in 2014, highly disputed & still unresolved issue

Production Templates for Dark Matter

Production mechanisms for Dark Matter

Thermal freeze-out: DM in thermal contact with SM until expansion rate exceeds interaction rate. $\Omega_{\rm DM} \sim \langle \sigma v \rangle^{-1}$. Production Templates for Dark Matter

Production mechanisms for Dark Matter

- Thermal freeze-out: DM in thermal contact with SM until expansion rate exceeds interaction rate. $\Omega_{\rm DM} \sim \langle \sigma v \rangle^{-1}$.
- Thermal freeze-in: Interaction too weak to ever establish equilibrium of DM. Occasional production from the plasma until average energy $\ll m_{\rm DM}$. $\Omega_{\rm DM} \sim \sigma^{+1}$.

Production Templates for Dark Matter

Production mechanisms for Dark Matter

- Thermal freeze-out: DM in thermal contact with SM until expansion rate exceeds interaction rate. $\Omega_{\rm DM} \sim \langle \sigma v \rangle^{-1}$.
- Thermal freeze-in: Interaction too weak to ever establish equilibrium of DM. Occasional production from the plasma until average energy $\ll m_{\rm DM}$. $\Omega_{\rm DM} \sim \sigma^{+1}$.
- Decay of parent particles: Highly non-thermal process, parent P itself can freeze in or out or be a decay product itself. $\Omega_{\rm DM} = \Omega_{\rm DM} \left(\sigma_{\rm P\leftrightarrow SM}, \Gamma_P \right)$

How to fill the templates with physical models for SN?

The popular production mechanisms are:

Dodelson-Widrow production (DW), aka non-resonant active-sterile conversion (freeze-in), $\Omega_{\rm DM} \propto \sin^2(2\theta)$

How to fill the templates with physical models for SN?

The popular production mechanisms are:

Dodelson-Widrow production (DW), aka non-resonant active-sterile conversion (freeze-in), $\Omega_{\rm DM} \propto \sin^2(2\theta)$

How to fill the templates with physical models for SN?

The popular production mechanisms are:

Dodelson-Widrow production (DW), aka non-resonant active-sterile conversion (freeze-in), $\Omega_{\rm DM} \propto \sin^2(2\theta)$

 Shi-Fuller production (SF), aka resonant active-sterile conversion (freeze-in)

How to fill the templates with physical models for SN?

The popular production mechanisms are:

Dodelson-Widrow production (DW), aka non-resonant active-sterile conversion (freeze-in), $\Omega_{\rm DM} \propto \sin^2(2\theta)$

 Shi-Fuller production (SF), aka resonant active-sterile conversion (freeze-in)

How to fill the templates with physical models for SN?

The popular production mechanisms are:

Dodelson-Widrow production (DW), aka non-resonant active-sterile conversion (freeze-in), $\Omega_{\rm DM} \propto \sin^2(2\theta)$

- Shi-Fuller production (SF), aka resonant active-sterile conversion (freeze-in)
- Diluted thermal freeze-out: $SU(3)_C \times SU(2)_L \times U(1)_Y \times \mathcal{G}_X$

How to fill the templates with physical models for SN?

The popular production mechanisms are:

Dodelson-Widrow production (DW), aka non-resonant active-sterile conversion (freeze-in), $\Omega_{DM} \propto \sin^2(2\theta)$

- Shi-Fuller production (SF), aka resonant active-sterile conversion (freeze-in)
- Diluted thermal freeze out: $SU(3)_C \times SU(2)_L \times U(1)_Y \times \mathcal{G}_X$

How to fill the templates with physical models for SN?

The popular production mechanisms are:

Dodelson-Widrow production (DW), aka non-resonant active-sterile conversion (freeze-in), $\Omega_{DM} \propto \sin^2(2\theta)$

- Shi-Fuller production (SF), aka resonant active-sterile conversion (freeze-in)
- Diluted thermal freeze out: $SU(3)_C \times SU(2)_L \times U(1)_Y \times \mathcal{G}_X$
- DW/SF + late thermalisation in dark sector.

How to fill the templates with physical models for SN?

The popular production mechanisms are:

Dodelson-Widrow production (DW), aka non-resonant active-sterile conversion (freeze-in), $\Omega_{\rm DM} \propto \sin^2(2\theta)$

- Shi-Fuller production (SF), aka resonant active-sterile conversion (freeze-in)
- Diluted thermal freeze-out: $SU(3)_C \times SU(2)_L \times U(1)_Y \times \mathcal{G}_X$
- DW/SF + late thermalisation in dark sector.
- Decay production via some parent particle, e.g. real scalar singlet S coupled to Higgs sector.

DW / SF and structure formation

"Temperature map" of SF (taken from 1601.07553 by A. Schneider)

DW / SF and structure formation II

Constraints from # of MW satellites and Lyman- α -forest (1601.07553).

DW / SF and structure formation II

Constraints from # of MW satellites and Lyman- α -forest (1601.07553).

DW / SF and structure formation II

Constraints from # of MW satellites and Lyman- α -forest (1601.07553).

L The Scalar Decay Model for keV Steriles

A simple model for scalar decay – Lagrangian

■ Field content beyond SM: real scalar singlet *S* and one sterile neutrino *N*.

L The Scalar Decay Model for keV Steriles

A simple model for scalar decay – Lagrangian

- Field content beyond SM: real scalar singlet S and one sterile neutrino N.
- Lagrangian:

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \left[i \overline{N} \partial \!\!\!/ N + \frac{1}{2} \left(\partial_{\mu} S \right) \left(\partial^{\mu} S \right) - \frac{y}{2} S \overline{N^{c}} N + \text{h.c.} \right] - V_{\rm scalar}$$

where

$$V_{\rm scalar} = -\mu_{\Phi}^2 \Phi^{\dagger} \Phi - \frac{1}{2} \mu_{S}^2 S^2 + \lambda_{\Phi} \left(\Phi^{\dagger} \Phi \right)^2 + \frac{\lambda_{S}}{4} S^4 + 2\lambda \left(\Phi^{\dagger} \Phi \right) S^2$$

L The Scalar Decay Model for keV Steriles

A simple model for scalar decay – Lagrangian

- Field content beyond SM: real scalar singlet S and one sterile neutrino N.
- Lagrangian:

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \left[i \overline{N} \partial \!\!\!/ N + \frac{1}{2} \left(\partial_{\mu} S \right) \left(\partial^{\mu} S \right) - \frac{y}{2} S \overline{N^{c}} N + \text{h.c.} \right] - V_{\rm scalar}$$

where

$$V_{\rm scalar} = -\mu_{\Phi}^2 \Phi^{\dagger} \Phi - \frac{1}{2} \mu_{S}^2 S^2 + \lambda_{\Phi} \left(\Phi^{\dagger} \Phi \right)^2 + \frac{\lambda_{S}}{4} S^4 + 2\lambda \left(\Phi^{\dagger} \Phi \right) S^2$$

• Processes for DM production: $SS \leftrightarrow \Phi\Phi$ (from plasma) $S \rightarrow NN$

L The Scalar Decay Model for keV Steriles

A simple model for scalar decay – Lagrangian

- Field content beyond SM: real scalar singlet S and one sterile neutrino N.
- Lagrangian:

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \left[i \overline{N} \partial \!\!\!/ N + \frac{1}{2} \left(\partial_{\mu} S \right) \left(\partial^{\mu} S \right) - \frac{y}{2} S \overline{N^{c}} N + \text{h.c.} \right] - V_{\rm scalar}$$

where

$$V_{\text{scalar}} = -\mu_{\Phi}^2 \Phi^{\dagger} \Phi - \frac{1}{2} \mu_{S}^2 S^2 + \lambda_{\Phi} \left(\Phi^{\dagger} \Phi \right)^2 + \frac{\lambda_{S}}{4} S^4 + 2\lambda \left(\Phi^{\dagger} \Phi \right) S^2$$

- Processes for DM production: $SS \leftrightarrow \Phi\Phi$ (from plasma) $S \rightarrow NN$
- Mixing $\sin^2 \theta$ switched off in this model (good approx., cf. 1512.05369 (Merle, Schneider, MT)) \Rightarrow Can however be arbitrarily small, not needed to produce ν_S
L The Scalar Decay Model for keV Steriles

A simple model for scalar decay – production channels

Production of scalar S from SM d.o.f. depending on whether $T > T_{\rm EW}$ (I) // $T < T_{\rm EW}$ & $m_S > m_h/2$ (II) // $T < T_{\rm EW}$ & $m_S < m_h/2$ (III).

L The Scalar Decay Model for keV Steriles

A simple model for scalar decay – production channels

Production of scalar S from SM d.o.f. depending on whether $T > T_{\rm EW}$ (I) // $T < T_{\rm EW}$ & $m_S > m_h/2$ (II) // $T < T_{\rm EW}$ & $m_S < m_h/2$ (III).

L The Scalar Decay Model for keV Steriles

A simple model for scalar decay – different m_S

Depending on λ and m_S , different production regimes are relevant:

A Primer in Cosmic Structure Formation: "Dark Matters"

The Cosmic Web: Far from homogeneous on small scales

Figure: credit: MilleniumSimulation, Cold Dark Matter Simulation

A Primer in Cosmic Structure Formation: "Dark Matters"

The Cosmic Web: Far from homogeneous on small scales

Figure: credit: MilleniumSimulation, Cold Dark Matter Simulation

This simulation matches observations very well, except for smallest scales (Missing Satellites, Too-Big-Too-Fail, Cusp-Core-Problem)

A Primer in Cosmic Structure Formation: "Dark Matters"

Where does the structure come from?

Inflation seeds tiny inhomogeneities in energy density components.

A Primer in Cosmic Structure Formation: "Dark Matters"

- Inflation seeds tiny inhomogeneities in energy density components.
- Overdensities will grow under self-gravitation.

A Primer in Cosmic Structure Formation: "Dark Matters"

- Inflation seeds tiny inhomogeneities in energy density components.
- Overdensities will grow under self-gravitation.
- Baryonic fluid and photon fluid interact and start accoustic oscillations.

A Primer in Cosmic Structure Formation: "Dark Matters"

- Inflation seeds tiny inhomogeneities in energy density components.
- Overdensities will grow under self-gravitation.
- Baryonic fluid and photon fluid interact and start accoustic oscillations.
- After CMB decoupling, fluctuations can grow more easily.

A Primer in Cosmic Structure Formation: "Dark Matters"

- Inflation seeds tiny inhomogeneities in energy density components.
- Overdensities will grow under self-gravitation.
- Baryonic fluid and photon fluid interact and start accoustic oscillations.
- After CMB decoupling, fluctuations can grow more easily.
- Velocity dispersion of DM particles partly washes out structure.

A Primer in Cosmic Structure Formation: "Dark Matters"

- Inflation seeds tiny inhomogeneities in energy density components.
- Overdensities will grow under self-gravitation.
- Baryonic fluid and photon fluid interact and start accoustic oscillations.
- After CMB decoupling, fluctuations can grow more easily.
- Velocity dispersion of DM particles partly washes out structure.
- Everything happens in expanding background.

A Primer in Cosmic Structure Formation: "Dark Matters"

- Inflation seeds tiny inhomogeneities in energy density components.
- Overdensities will grow under self-gravitation.
- Baryonic fluid and photon fluid interact and start accoustic oscillations.
- After CMB decoupling, fluctuations can grow more easily.
- Velocity dispersion of DM particles partly washes out structure.
- Everything happens in expanding background.
- First, perturbations grow linearly (solve equations semi-analytically), then non-linearly (need for N-body simulations).

A Primer in Cosmic Structure Formation: "Dark Matters"

Simulating the Cosmic Web

credit: ITC @ University of Zurich

A Primer in Cosmic Structure Formation: "Dark Matters"

Simulating the Cosmic Web

credit: ITC @ University of Zurich

A Primer in Cosmic Structure Formation: "Dark Matters"

Measuring the cosmic web

Different scales \rightarrow different techniques:

Figure: Small scales probed by Lyman- α forest. (see 1005.1100)

A Primer in Cosmic Structure Formation: "Dark Matters"

What is the Lyman- α forest?

Spectra from distant Quasars get redshifted.

A Primer in Cosmic Structure Formation: "Dark Matters"

What is the Lyman- α forest?

- Spectra from distant Quasars get redshifted.
- The mode that has the physical wavelength of the Lyman-α transition gets absorbed by the hydrogen present at that redshift (i.e. at a certain distance).

A Primer in Cosmic Structure Formation: "Dark Matters"

What is the Lyman- α forest?

- Spectra from distant Quasars get redshifted.
- The mode that has the physical wavelength of the Lyman-α transition gets absorbed by the hydrogen present at that redshift (i.e. at a certain distance).

 $\gg\gg$ Visual explanation $\ll\ll$

A Primer in Cosmic Structure Formation: "Dark Matters"

What is the Lyman- α forest?

- Spectra from distant Quasars get redshifted.
- The mode that has the physical wavelength of the Lyman-α transition gets absorbed by the hydrogen present at that redshift (i.e. at a certain distance).

 $\gg\gg$ Visual explanation $\ll\ll$

 $\blacksquare \Rightarrow$ many line-of-sight profiles allow for a 3D reconstruction of densitites.

How to assess structure formation

The particle physicist's comfort zone: $\lambda_{ m fs}$

Simplest back-of-the-envelope-approach:

$$\lambda_{\mathrm{fs}} = \int_{t_{\mathrm{prod}}}^{t_{0}} \mathrm{d}t rac{\langle v(t)
angle}{a(t)}$$

How to assess structure formation

The particle physicist's comfort zone: $\lambda_{ m fs}$

Simplest back-of-the-envelope-approach:

$$\lambda_{\mathrm{fs}} = \int_{t_{\mathrm{prod}}}^{t_{0}} \mathrm{d}t \frac{\langle v\left(t
ight)
angle}{a\left(t
ight)}$$

 $\begin{array}{l} \mbox{Common classification: } \lambda_{fs} < 0.01 \ {\rm Mpc \ cold}, \\ 0.01 \ {\rm Mpc} \le \lambda_{fs} < 0.1 \ {\rm Mpc \ warm}, \\ \lambda_{fs} \ge 0.1 \ {\rm Mpc \ hot}. \end{array}$

How to assess structure formation

The particle physicist's comfort zone: $\lambda_{ m fs}$

Simplest back-of-the-envelope-approach:

$$\lambda_{\mathrm{fs}} = \int_{t_{\mathrm{prod}}}^{t_{0}} \mathrm{d}t \frac{\langle v(t) \rangle}{a(t)}$$

 $\begin{array}{l} \mbox{Common classification: } \lambda_{fs} < 0.01 \, \mbox{Mpc cold,} \\ 0.01 \, \mbox{Mpc} \leq \lambda_{fs} < 0.1 \, \mbox{Mpc warm,} \\ \lambda_{fs} \geq 0.1 \, \mbox{Mpc hot.} \end{array}$

Problem: Average might not be a good description, especially for non-thermal dark matter (more to come...)

How to assess structure formation

Leaving the comfort zone

Next step:

How to assess structure formation

Leaving the comfort zone

Next step:

• Compute power spectrum P(k) and compare to observations.

How to assess structure formation

Leaving the comfort zone

Next step:

- Compute power spectrum P(k) and compare to observations.
- Convetional: normalise to CDM benchmark:

$$\mathcal{T}^{2}\left(k
ight)\equivrac{P\left(k
ight)}{P_{ ext{CDM}}\left(k
ight)}$$

How to assess structure formation

Leaving the comfort zone

Next step:

- Compute power spectrum P(k) and compare to observations.
- Convetional: normalise to CDM benchmark:

$$\mathcal{T}^{2}\left(k
ight)\equivrac{P\left(k
ight)}{P_{ ext{CDM}}\left(k
ight)}$$

• Compare to observables like the Lyman- α forest.

How to assess structure formation

Comparing a DM model to observations

A simple but reliable method: the half-mode analysis (JCAP 1611(038))

High-power region

inconsistent with Lyman-α bound

Forbidden

How to assess structure formation

Comparing a DM model to observations

A simple but reliable method: the half-mode analysis (JCAP 1611(038))

If region of high power (i.e. at $T^2 \ge 1/2$) agrees with observation, model is considered allowed.

How to assess structure formation

Comparing a DM model to observations

A simple but reliable method: the half-mode analysis (JCAP 1611(038))

- If region of high power (i.e. at $T^2 \ge 1/2$) agrees with observation, model is considered allowed.
- Potentially problematic: benchmark also dervied assuming thermal spectrum!

How to assess structure formation

Is the whole song and dance necessary?

How to assess structure formation

Is the whole song and dance necessary?

Can we return the boundaries of $\lambda_{\rm fs}?$ No, we can't as the average is not a good estimator!

How to assess structure formation

Is the whole song and dance necessary?

Can we retune the boundaries of $\lambda_{\rm fs}$? No, we can't as the average is not a good estimator!

Figure: Mock spectra with identical $\langle x \rangle$ (by construction) but different squared transfer function \mathcal{T}^2 .

How to assess structure formation

More advanced methods

The simple half-mode analysis has been tested in 1704.07838 and in ApJ 836(61) using

- integrated deviation of linear power spectrum from benchmark derived from Lyman- α data,
- the number of MW subhaloes in comparison to the number of observed satellites,
- the count of ultra-faint galaxies at redshift z = 6.
- \Rightarrow Very close agreement to half-mode analysis found!

Structure formation for the SD model

SD model and the half-mode analysis

Figure: Constraints from structure formation in the plane λ -vs.-y for $m_S = 100 GeV$. Taken from JCAP 1611(038) (König, Merle, MT).

Structure formation for the SD model

SD model and the half-mode analysis

For other masses m_S , the picture looks similar but not identical:

Figure: For $m_S = 65 \,\text{GeV}$, the 'freeze-out region' is completely forbidden!

Structure formation for the SD model

Half-mode analysis vs. free-streaming

Comparison of the free-streaming approach and the half-mode analysis:

Figure: The free-stremaing approach (with the standard boundaries) is much more restrictive!
Structure formation for the SD model

Half-mode analysis vs. high-z galaxy count

Figure: Regions in accordance with the count of high-z galaxies. Adapted from ApJ 836(61) (Menci, Merle, MT et al.).

Structure formation for the SD model

Half-mode analysis vs. refined Ly- α and MW satellite counts

Figure: Judgement from MW satellites and refined Ly- α . Note the slight offset of the crosses from the iso-mass-lines. Adapted 1704.07838 (Murgia, Viel, Merle, Schneider, MT).

Conclusion and Outlook

Conclusion

• Cosmic Web is a powerful observable to constrain DM models

Conclusion and Outlook

- Cosmic Web is a powerful observable to constrain DM models
- keV sterile neutrinos are theoretically well motivated candidates for DM. A production process in accordance with all bounds cannot be trivial.

Conclusion and Outlook

- Cosmic Web is a powerful observable to constrain DM models
- keV sterile neutrinos are theoretically well motivated candidates for DM. A production process in accordance with all bounds cannot be trivial.
- Scalar singlet decay is among the most favourable production mechanisms for sterile neutrino DM.

Conclusion and Outlook

- Cosmic Web is a powerful observable to constrain DM models
- keV sterile neutrinos are theoretically well motivated candidates for DM. A production process in accordance with all bounds cannot be trivial.
- Scalar singlet decay is among the most favourable production mechanisms for sterile neutrino DM.
- New methods for non-thermal DM (half-mode, high-z counts, MW satellite counts, refined Ly-α) can capture spectral analysis and agree quite well. Free-streaming *not* very reliable for non-thermal spectra.

Conclusion and Outlook

- Cosmic Web is a powerful observable to constrain DM models
- keV sterile neutrinos are theoretically well motivated candidates for DM. A production process in accordance with all bounds cannot be trivial.
- Scalar singlet decay is among the most favourable production mechanisms for sterile neutrino DM.
- New methods for non-thermal DM (half-mode, high-z counts, MW satellite counts, refined Ly-α) can capture spectral analysis and agree quite well. Free-streaming *not* very reliable for non-thermal spectra.
- Future experiments like KATRIN–TRISTAN, ECHo, DyNO will probe the parameter space m_N -sin (2 θ) in clean lab environments. They will either find nothing (sensitivity) or put Standard Cosmology into a lot of trouble.

Conclusion and Outlook

Thank you for your attention!

Backup II – Effect of DW on scalar decay

