

Search for top Squarks Using Multivariate Methods

Jonas Graw

Max Planck Institute for Physics (Werner-Heisenberg-Institut)

Thursday 20th July, 2017

Motivation

Standard Strategy: Cut-based analysis

 \rightarrow Try to look at multivariate methods using Monte Carlo-samples

Machine Learning

- Classification: Signal or Background
- Supervised learning: Training done with *labeled* simulated events
- Events divided into training and testing (e. g. 50%-50%)
- Overtraining ("learning by heart") needs to be avoided

Boosted Decision Tree (BDT)

- Division into two processes: Signal and Background
- Decision which variable to take is done by exactly one discriminating variable (cut)
- Chosen discriminating variable gives the best possible signal background separation
- Boosting: Training of a new tree, for which falsely classified events get a bigger weight

Jonas Graw - $\tilde{t} \rightarrow 0\ell$ - MVA

■ BDT response $r(i) \in [-1, 1]$ of an event *i*: Classification measure dependent on the trees with limits $\begin{cases}
r(i) = +1 \\
r(i) = -1
\end{cases}$: All trees classify *i* as $\begin{cases}
signal \\
background
\end{cases}$

- Boosted Decision Tree (BDT) utilized to optimize the usage of discriminating variables
- Training on region with 0 ℓ , $E_{\rm T}^{\rm miss}$ > 250 GeV, \geq 4 Jets & \geq 1 *b*-Jet

 BDT-response for MC-test- and MC-training data is in very good accordance → No overtraining ^{07/20/2017}

- Training for models with $m_{\tilde{t}} \ge 1 \text{TeV}$ reaches better significances than Training for model with $m_{\tilde{t}} = 1 \text{TeV}$ and $m_{\tilde{\chi}^0} = 1 \text{ GeV}$
- ROC-Curve is an indicator of how good the training was

 The area under the curve is a good measure of the training

Cut on BDT-respones

- Partially very high significances
- Important variables: m_{T2} , $p_T(top)$, E_T^{miss}
- Cut on BDT-response ≥ 0,34

07/20/2017

Jonas Graw - $\tilde{t}
ightarrow 0\ell$ - MVA

Expected Significances in $m_{\tilde{t}}$ - $m_{\tilde{\chi}_1^0}$ -Parameter Space

Cut-based method

BDT method

Cut-based	BDT
1.7σ	3.0σ

- $\Rightarrow~$ Expected significance of 3σ up to $m_{\tilde{t}}=$ 1 TeV
- \Rightarrow Can we increase this by changing the BDT settings?

Jonas Graw - $\tilde{t} \rightarrow 0\ell$ - MVA

• Expected significances of a sample with $m_{\tilde{t}} = 1$ TeV and $m_{\tilde{\chi}^0} = 1$ GeV

- Maximal Depth: How many different layers can an event surpass?
- Minimal Node Size: Fraction (%) of events required to be in a leaf
- \Rightarrow Are these really the best settings?

• Area under ROC-Curve of a sample with $m_{ ilde{t}}=1$ TeV and $m_{ ilde{y}^0}=1$ GeV

- Area under ROC-Curve tests against overtraining
- High Maximal Depth and Small Minimal Node Size minimizes ROC-area
- \Rightarrow Sign for overtraining!
 - Settings: MaxDepth = 4, MinNodeSize = 1.5%

07/20/2017

• Training for model with $m_{\tilde{t}} \ge 1 \text{ TeV}$

Training with all samples

- Significant increase of the sensitive regions in the paramter space, especially in direction towards kinematic border $(m_{\tilde{t}} = m_{\tilde{\chi}^0} + m_t)$
- For large $m_{\tilde{t}}$: Training with MC-data with $m_{\tilde{t}} \ge 1$ TeV only more promising

Comparing against other MVA methods

Ar Ayatt

Training for model with $m_{\tilde{t}} = 1$ TeV and $m_{\tilde{\chi}^0} = 100$ GeV

BDT

Support Vector Machine (SVM)

BDT achieves better significances

- Started to look at MVA methods for increasing sensitivity for $\tilde{t} \to 0 \ell$ analysis
- Training with several signal samples seems reasonable
- Current Steps:
- Checking dependency on BDT settings and BDT input variables
- Look at neural networks

BACKUP

• After training: Compare true values y_i with forecast s_i . w_i : weights, with $\sum_i w_i = 1$

• error fraction:
$$e = \sum_{i} w_i 1_{s_i \neq y_i}$$

- boost factor $\alpha=\beta\cdot\ln\left(\frac{1-{\rm e}}{{\rm e}}\right)$ with β constant, usually $\beta\in[0,1]$

• New weights:
$$w_i
ightarrow w_i \cdot exp(lpha \cdot 1_{\mathbf{s}_i
eq y_i})$$

BDT response of event *i*:
$$r_i = \frac{\sum_m \alpha_m (s_i)_m}{\sum_m \alpha_m}$$
, where
 $\int 1$ if tree *m* predicts signal

 $(\mathbf{s}_i)_m = \begin{cases} -1 & \text{if tree } m \text{ predicts background} \end{cases}$

- Data only for BDT-response < 0</p>
- Tiny deviation in normalization between data and MC-forecast

 Good agreement of physical observables in region
 BDT response < 0