

Time dependent CP-Violation at the Belle II Experiment

Fernando Abudinén

July 20, 2017

- 1 SuperKEKB and Belle II
- 2 CP-Violation in the SM
- 3 Time-dep. CP-Analysis
- 4 Belle II sensitivity to ϕ_2
- 5 Summary and Outlook

Max-Planck-Institut für Physik

KEKB/SuperKEKB Collider

Upgrade: KEKB \Rightarrow SuperKEKB Belle \Rightarrow Belle II

KEK = kō enerugī kasokuki kenkyū kikō high energy collider research organization At: Tsukuba, Ibaraki Prefecture, Japan

Belle/Belle II Experiment

2

Nano Beam Scheme

Time of Propagation counter with 20 mm quartz bars MCP-PMT readout K_L^0/μ Detector (outside) RPC Plates and plastic scintillators with SiPM readout Superconducting Magnet

homogeneous field of $1.5\,\text{T}$

 $\begin{array}{l} \mbox{Electromagnetic Calorimeter}\\ 8000 \ \mbox{Csl Crystals}, \ 16 \ \mbox{X}_0 \\ \mbox{PMT/APD readout} \end{array}$

Pixel Vertex Detector 2 layer pixel detector (8MP) DEPFET technology

Silicon Vertex Detector 4 layer double sided strips 20-50 ns shaping time

Central Drift Chamber proportional wire drift chamber 15000 sense wires in 58 layers Aerogel RICH Proximity focusing RICH with silica aerogel

Our Contributions

PXD development:

- Sensor design, prod. and testing
- \Rightarrow Analysis of testbeam data
 - Mechanical design, final assembly
 - Cooling system (IBBelle)

Software development:

- Belle II framework development
- PXD and SVD simulation
- \Rightarrow w/o machine background
 - Tracking, Vertexing and Flavor Tagging
 - Neural z-vertex trigger

Machine commissioning:

 Design, prod. and operation of CLAWS detector

Belle CP-Analysis:

 $\bullet \hspace{0.1 cm} B^{0} \rightarrow \pi^{+}\pi^{-}, \hspace{0.1 cm} \pi^{-}K^{+}, \hspace{0.1 cm} K^{-}K^{+} \\ \rho\rho, \hspace{0.1 cm} \omega K^{0}_{S} \end{array}$

Belle II sensitivity studies:

$$\blacksquare \ B^0 \to J/\psi K^0_S \text{, } \pi^0 \pi^0$$

- Why CP-Violation? ⇒ Matter-Antimatter-Asymm. in the universe larger than in SM. Sakharov's 2nd cond.: C-V, CP-V.
- Why in the B^0 -system? \Rightarrow largest CP-V. within the SM.
- CP-V. in the SM \Rightarrow Weak Interaction \Rightarrow \mathbf{V}_{CKM}

$$\begin{pmatrix} d'\\s'\\b' \end{pmatrix} = \begin{pmatrix} V_{ud}\\V_{cd}\\V_{td}\\V_{ts}\\V_{ts}\\V_{tb} \end{pmatrix} \begin{pmatrix} d\\s\\b \end{pmatrix}$$

Params: 3 Real, 1 Im.: $\lambda = \sin \theta_C \approx 0.2, A, \rho, \eta$

$$\begin{split} \mathbf{V}_{CKM} &= \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{1}{2}\lambda^2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta)] & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4) \\ \Rightarrow \ \mathcal{L}^{\mathsf{Yuk}} &\propto igW^{\mu}J^{cc}_{\mu} \Rightarrow J^{cc}_{\mu} \xrightarrow{CP} J^{cc}_{\mu} \neq J^{cc}_{\mu} \\ & \bullet \quad \mathsf{Unitarity:} \ \sum_k V^*_{ki}V_{kj} = 0 \Rightarrow \boxed{V_{ud}V^*_{ub} + V_{cd}V^*_{cb} + V_{td}V^*_{tb}} = 0 \end{split}$$

 $\mathcal{O}(\lambda^3) = \mathcal{O}(\lambda^3) = \mathcal{O}(\lambda^3)$

$$\mathcal{A}_{CP}{}^{J/\psi K_S^0} = 0$$
$$\mathcal{S}_{CP}{}^{J/\psi K_S^0} = \sin(2\phi_1)$$

 $\mathcal{A}_{CP}{}^{\phi K_S^0} = 0$ $\mathcal{S}_{CP}{}^{\phi K_S^0} = \sin(2\phi_1)$

- \blacksquare Inst. Lumi.: $\mathcal{L}_{\mathsf{Belle II}} \sim 40 \cdot \mathcal{L}_{\mathsf{Belle}}$
- \Rightarrow Background $\uparrow\uparrow\uparrow$
 - Closest to IP
- \Rightarrow Occupancy ($\sim r^{-2}$) $\uparrow\uparrow\uparrow$
 - $\blacksquare \ \langle \beta \gamma \rangle_{\rm Belle \ II} < \langle \beta \gamma \rangle_{\rm Belle \ II}$
- \Rightarrow smaller Δz
- \Rightarrow Pixel Detector needed !
- $\Rightarrow {\sf DEPFET} \ {\sf Technology} \ {\sf most} \ {\sf suited} \\ {\sf DEPleted} \ {\sf Field} \ {\sf Effect} \ {\sf Transistor}$

Extraction of ϕ_2 is possible through:

- Isospin analysis of $B \rightarrow \pi \pi$ (Isospin triangle).
- Isospin analysis of $B \rightarrow \rho \rho$ (Isospin triangle).
- Dalitz plot and Isospin analysis of $B \rightarrow \rho \pi$ (Isospin pentagon). Less Isospin breaking but lower experimental precision. Very complicated! (Not considered for Belle II sensitivity)

Extraction of ϕ_2 angle DEPFET M from $B \rightarrow \pi \pi$ MAXIMILIANS-UNIVERSITÄT

- Penguin and tree diagrams contribute.
- At tree level: $\mathcal{A}_{CP} = 0$ $\mathcal{S}_{CP} = \sin(2\phi_2)$
- At penguin level: $\mathcal{A}_{CP} \neq 0$ $\mathcal{S}_{CP} = \sqrt{1 - \mathcal{A}_{CP}} \sin(2\phi_2^{\text{eff}})$
- $\Rightarrow \phi_2^{\mathsf{eff}} = \phi_2 \Delta \phi_2$
 - Extr. $\Delta \phi_2$ through isospin analysis:

$$A^{+-} = A(B \to \pi^{+}\pi^{-})$$

1 $\frac{1}{\sqrt{2}}A^{+-} + A^{00} = A^{+0}$
2 $\frac{1}{\sqrt{2}}\bar{A}^{+-} + \bar{A}^{00} = \bar{A}^{-0}$

₁₂ Pure Tree: $A^{+0} = \bar{A}^{-0}$

Belle II

13

Isospin analysis: \mathbf{x}_{theo} contains 6 fit parameters including $\Delta \phi_2$ and ϕ_2 . The parameters are fitted using \mathbf{x}_{data}

$$\mathbf{x}_{\mathsf{data}} = \begin{pmatrix} \mathcal{B}(B^0 \to \pi^+ \pi^-) \\ \mathcal{B}(B^0 \to \pi^0 \pi^0) \\ \mathcal{B}(B^+ \to \pi^+ \pi^0) \\ \mathcal{A}_{\mathsf{CP}}(B^0 \to \pi^+ \pi^-) \\ \mathcal{S}_{\mathsf{CP}}(B^0 \to \pi^+ \pi^-) \\ \mathcal{A}_{\mathsf{CP}}(B^0 \to \pi^0 \pi^0) \\ \mathcal{S}_{\mathsf{CP}}(B^0 \to \pi^0 \pi^0) \end{pmatrix} \begin{pmatrix} \checkmark \\ \checkmark \\ \checkmark \\ \checkmark \\ \end{pmatrix}$$
Minimizing

$$\chi^{2} = -2\log\left[\frac{\exp\left(\frac{1}{2}\left(\mathbf{x}_{\mathsf{data}} - \mathbf{x}_{\mathsf{theo}}\right)^{T}\Sigma^{-1}\left(\mathbf{x}_{\mathsf{data}} - \mathbf{x}_{\mathsf{theo}}\right)\right)}{\sqrt{(2\pi)^{n}\det\Sigma}}\right]$$

 \Rightarrow 8 fold ambiguity in ϕ_2 w/out $S_{CP}(B^0 \rightarrow \pi^0 \pi^0) \Rightarrow$ Sensitivity?

Vertex of γ -Conversions in $B^0 \rightarrow \pi^0 \pi^0$

15

B^0 Reconstruction

- $1 \hspace{.1in} B^{\theta}_{\hspace{.1in} 4\gamma} \rightarrow \pi^{\theta}_{\hspace{.1in} \gamma\gamma} \pi^{\theta}_{\hspace{.1in} \gamma\gamma}$
- 2 $B^{\theta}{}_{\rm dal} \rightarrow \pi^{\theta}{}_{\rm dal} (\rightarrow e^+ e^- \gamma) \pi^{\theta}{}_{\gamma\gamma}$
- 3 $B^0{}_{\rm c} \to \pi^0{}_{\rm c} (\to \gamma (\to e^+ e^-) \gamma) \pi^0{}_{\gamma \gamma}$
- Reconstruction of π^0 s:
 - γ Selection: $E_{\gamma} > 50$ MeV (Barrel) $E_{\gamma} > 100$ MeV (Front) $E_{\gamma} > 150$ MeV (Back)
 - e^{\pm} Selection: $d_0 < 0.25$ cm
 - At least one PXD hit (e^+ or e^-)
 - $m_{\pi^0} \in [105, 165] \text{ MeV} \sim \pm 2.5 \cdot \sigma_{m_{\pi^0}}$

 $|\cos(\theta_{\text{helicity}})| < 0.95$ 16

B^{θ} Vertex

Reconstruction

- Vertex Reconstruction with iptube constrain.
- If conversion in beam pipe and e[±] with PXD hits
- $\Rightarrow \ {\pi^{\theta}}_{\rm c} \ {\rm and} \ {\pi^{\theta}}_{\rm dal} \ {\rm kinematically} \ {\rm indistinguishable}.$

- $au_{\pi^{\theta}} \sim 0.9$ as $\ \cong \ 0.1 \ {\rm nm}$
- $\Rightarrow \pi^{\theta} \text{ Vertex} = B^{\theta} \text{ Vertex}.$
- Check with MC truth.

Reconstructed as
$$B^0_{\ \ dal} \rightarrow \pi^0_{\ \ \gamma\gamma} \pi^0_{\ \ dal} \hookrightarrow e^+ \ e^- \ \gamma$$

 $q \cdot r$ $\varepsilon_{\text{Eff}}(\text{Belle II MC5}) = 35.8\%$ $\varepsilon_{\text{Eff}}(\text{Belle}) = 29\%$

MC Flavor

Toy MC Projections

\mathcal{A}_{CP} and \mathcal{S}_{CP} Pulls and Statistical Uncertainties

Toy MC and \mathcal{A}_{CP} Pull and Uncertainty

Result of Isospin analysis

Isospin analysis for dominant ρ polarization $\rho_{\rm L}$ (CP even). \Rightarrow

$$\mathbf{x}_{\mathsf{data}} = \begin{pmatrix} f_{\mathsf{L},\ \rho^+\rho^-} \cdot \mathcal{B}(B^0 \to \rho^+\rho^-) \\ f_{\mathsf{L},\ \rho^0\rho^0} \cdot \mathcal{B}(B^0 \to \rho^0\rho^0) \\ f_{\mathsf{L},\ \rho^+\rho^0} \cdot \mathcal{B}(B^+ \to \rho^+\rho^0) \\ \mathcal{A}_{\mathsf{CP}}(B^0 \to \rho^+\rho^-) \\ \mathcal{S}_{\mathsf{CP}}(B^0 \to \rho^0\rho^0) \\ \mathcal{A}_{\mathsf{CP}}(B^0 \to \rho^0\rho^0) \\ \mathcal{S}_{\mathsf{CP}}(B^0 \to \rho^0\rho^0) \end{pmatrix} \checkmark$$

Result of Isospin analysis

Combined Isospin Analysis

- Machine commissioning started! Begin of data taking planned for 2018! Strong contribution from our institute!
- Search at next generation *B*-Factory SuperKEKB complementary to LHC. $\int \mathcal{L} \cdot dt = 50 \text{ ab}^{-1} \Rightarrow ??$

 \Rightarrow Expected sensitivities:

 $\Delta\phi_2(\pi\pi)\approx 4^\circ\text{, }\Delta\phi_2(\rho\rho)\approx 0.7^\circ\text{ and }\Delta\phi_2(\pi\pi,\rho\rho)\approx 0.6^\circ.$

Categories	Discriminating input variables				
Electron	$p^*, \ p^*_{t}, \ p, \ p_{t}, \ \mathcal{L}_e, \ M_{recoil}, \ p^*_{miss}, \ \cos heta^*_{miss}, E^W_{90}, \ \chi^2$				
Int. Electron	$p^*, \; p^*_{ extsf{t}}, \; p, \; p_{ extsf{t}}, \; \mathcal{L}_e, \; M_{ extsf{recoil}}, \; p^*_{ extsf{miss}}, \; \cos heta^*_{ extsf{miss}}, E^W_{90}, \; \chi^2$				
Muon	$p^{*}, \; p_{ extsf{t}}^{*}, \; p, \; p_{ extsf{t}}, \; \mathcal{L}_{\mu}, \; M_{ extsf{recoil}}, \; p_{ extsf{miss}}^{*}, \; \cos heta_{ extsf{miss}}^{*}, E_{90}^{W}, \; \chi^{2}$				
Int. Muon	$p^{*}, \; p_{ extsf{t}}^{*}, \; p, \; p_{ extsf{t}}, \; \mathcal{L}_{\mu}, \; M_{ extsf{recoil}}, \; p_{ extsf{miss}}^{*}, \; \cos heta_{ extsf{miss}}^{*}, E_{90}^{W}, \; \chi^{2}$				
KinLepton	$p^{*}, \; p_{ extsf{t}}^{*}, \; p, \; p_{ extsf{t}}, \; \mathcal{L}_{\mu}, \; \mathcal{L}_{e}, \; M_{ extsf{recoil}}, \; p_{ extsf{miss}}^{*}, \; \cos heta_{ extsf{miss}}^{*}, E_{90}^{W}, \; \chi^{2}$				
Int. KinLepton	$p^*, \ p^*_{t}, \ p, \ p_{t}, \ \mathcal{L}_{\mu}, \ \mathcal{L}_{e}, \ M_{recoil}, \ p^*_{miss}, \ \cos heta^*_{miss}, E^W_{90}, \ \chi^2$				
Kaon	$p^*, \; p^*_{t}, \; p_{t}, \; \mathcal{L}_K, \; \cos heta, \; n_{K^0_S}, \; \sum p_{t}, \; \mathbf{x} , \; \chi^2$				
KaonPion	$y_{Kaon}, \; y_{SlowPion}, \; \cos heta_{K,\pi}, \; q_K \cdot q_\pi, \; \mathcal{L}_K$				
SlowPion	$p^*, \; p^*_{t}, \; p, \; p_{t}, \; \mathcal{L}_{\pi}, \; \mathcal{L}_{K}, \; \mathcal{L}_{e}, \; \cos heta, \; \cos heta_{Thrust}, \; \chi^2$				
$MaximumP^*$	$p^*, \; p^*_{t}, \; p, \; p_{t}, \; \cos heta_{Thrust}, \; d_0$				
FSC	$p^*_{Slow}, p^*_{Fast}, \mathcal{L}_K, \cos \theta_{ThrustSlow}, \cos \theta_{ThrustFast}, \cos \theta_{SlowFast}, q_{Slow} \cdot q_{Fast}$				
FastPion	$p^*, p^*_{t}, p, p_{t}, \mathcal{L}_{\pi}, \mathcal{L}_{K}, \mathcal{L}_{e}, \cos heta, \cos heta_{Thrust}, \chi^2$				
Lambda	$p_{\Lambda}^*, \ p_{\Lambda}, \ p_{proton}^*, \ p_{proton}, \ p_{proton}, \ q_{\Lambda}, \ M_{\Lambda}, \ n_{K_S^0}, \ \cos \theta_{\mathbf{x}_{\Lambda}, \mathbf{p}_{\Lambda}}, \ \mathbf{x}_{\Lambda} , \ \sigma_{\Lambda}^{zz}, \ \chi_{\Lambda}^2$				

Optimized for CPU: 76 Calculations instead of 242

B0_FBDT_qrCombined:B0_deltae

Distribution of Continuum

Distribution on signal $B^0 \rightarrow \pi^0 \pi^0_{\rm dal}$

- a) If there is an event with $\gamma\text{-conversions}$
- \Rightarrow How Many?

b) How many Events have at least one γ -conversion?

Vertex in	Events $\%$
Beam Pipe	2.00 %
1st. PXD Layer	0.60 %
2nd. PXD Layer	0.50 %
Total inside PXD	3.10 %

c) ... and at least one $\gamma\text{-conversion}$ or one $\pi^{\theta} \to e^+e^-\gamma$ decay?

$$\begin{array}{c|c} \pi^0 \to e^+ e^- \gamma & 2.00 \% \\ \hline \textbf{Total} \ \pi^0 \cup \gamma & 5.05 \% \end{array}$$

Requirement: All converted γ in accept. and not converted in ECL

Final Selection

■
$$m_{\rm bc} = \sqrt{E_{\rm beam}^{*}^{2} - \mathbf{p}_{B^{\theta}}}$$

> 5.26 GeV/ c^{2}

- $\Delta E = E^*_{\text{beam}} E_{B^0}$ $\in [-0.3, 0.2] \text{ GeV}$
- Continuum Suppr. y_{FBDT} > 0.976
- \Rightarrow Maximizes $rac{n_{
 m sig}}{\sqrt{n_{
 m sig}+n_{
 m bkg}}}$
 - Flavor Dilution *r* > 0.1
 - \blacksquare Multiplicity $\lesssim 1.01$
- \Rightarrow Ranking according to Dilution

Option 1: B^{θ}_{dal} candidates have priority.

Candidate	$n_{\sf sig}$	$rac{n_{dal}}{n_{sig}}$ [%]	$\frac{n_{c}}{n_{sig}}$ [%]	$rac{n_{ m combin}}{n_{ m sig}+n_{ m comb}}$ [%]	FoM [%]
$B^{ heta}_{dal}$	274	54	46	1.1	7.0
B^{0}_{c}	46	28	72	3.3	3.6

Option 2: B^{0}_{c} candidates have priority.

Candidate	$n_{\sf sig}$	$rac{n_{dal}}{n_{sig}}$ [%]	$\frac{n_{c}}{n_{sig}}$ [%]	$rac{n_{ m combin}}{n_{ m sig}+n_{ m comb}}$ [%]	FoM [%]
$B^{ heta}_{dal}$	90	47	53	1.3	3.6
$B^0{}_{c}$	160	50	50	1.5	6.6

$$\mathrm{FoM} = \frac{n_{\mathrm{sig}}}{\sqrt{n_{\mathrm{sig}} + n_{\mathrm{combin}} + n_{\mathrm{cont}} + n_{B\overline{B}}}}$$

Belle II

 $\mu_{\Delta z} = 5.4 \pm 0.5 \,\mu m$

 $\sigma_{\Delta z} = 50.1 \pm 1.2 \,\mu m$

0.02 0.03

zrec - zren / cm

 $\mu_{\Delta z} = 5.2 \pm 0.4 \,\mu m$

 $\sigma_{\Delta z} = 51.0 \pm 1.0 \,\mu m$

zrec - zregen / cm

0.03

0.01 0.02

Tag Side: Tracks which remain from reco. side. $B_{\rm CP}$

 B^{0}

Algorithm: RAVE's Adaptive Vertex Fit

 Track weighting according to proximity to other tracks and spatial constraint.

DEPFET

Belle II

M

MAXIMILIANS

Class. acc. mother: $B\checkmark$, $D\checkmark$, $K_S^0 \bigstar$

Pull and Uncertainties on Signal Yields

Systematic Uncertainties

$$\mathcal{B}(B^0 \to \pi^0 \pi^0)$$

 $\mathcal{A}_{\mathsf{CP}}(B^0 \to \pi^0 \pi^0)$

Source	${\tt Belle}^a$	$50\frac{1}{ab}$ [%]
Flavor Tagging ^b	0.034	0.0034
$B\overline{B}$ Bkg. Param.	0.06	0.008
Cont. Bkg. Param	0.08	0.010
Fit Bias	0.02	0.003
Total	0.12	0.01

^{*a*} Belle Draft M. Sevior ^{*b*} BaBar PRD 87 052009

Source	Belle ^a [%]	$50\frac{1}{ab}$ [%]
Signal Sel.	1.5	0.19
Cont. Bkg. Param	11.0	1.39
Off-res Cont. Bkg.	3.0	0.38
ΔE and m_{bc}	4.0	0.51
π^{0} det. eff.	4.4	0.56
$B\overline{B}$ Bkg. Param.	5	0.60
Luminosity	1.4	1.40
Rec. Conv. Ph.	1.0	0
Timing Cut	0.5	0.06
Fit Bias	1.0	0.13
Total	14.0	2.25

	-	$ = \mathcal{V}_{a} $
Categories	Targets	
Electron	e^-	and the second s
Intermediate Electron	e^+	\overline{B}^{0} $\rightarrow \pi^{+}$
Muon	μ^-	$D^{*+} \longrightarrow K^{-}$
Intermediate Muon	μ^+	D^{0}
KinLepton	e^-	- //
Intermediate KinLepton	ℓ^+	$\rightarrow \pi^{-}$
Kaon	K^{-}	$ \nu_{\ell}$
KaonPion	K^- , π^+	$B^0 \longrightarrow \ell^+$
SlowPion	π^+	D^+
FastPion	π^-	$\sim K^0$
MaximumP	ℓ^- , π^-	►V ⁻
FSC	ℓ^- , π^+	
Lambda	Λ	\overline{B}^{0} π^{+}
Total= 13		Λ_c^+

Tagging Variables

- Splot performed with converted Belle data using m_{bc} as discriminating variable.
- Full Belle 0.8 ab⁻¹ $B^0 \rightarrow J/\psi K_S^0$

Flavor Tagger Validation

 Belle Data distribution weighted with splot output variable (signal component).

- Nice overlap of converted Belle MC and data ☺.
- $\varepsilon_{\rm Eff} \approx 31\%$ on converted Belle MC (Belle $\sim 29\%$) ©.
- Optimized also for CPU time ☺.
- 48 ε_{Eff} on Belle II MC is software release (tracking) dependent \odot .

- Binning ⇒ correction with real data!
- Efficiency:

$$\varepsilon_{\text{Eff}} = \sum_i \varepsilon_i \cdot \langle r_i \rangle^2$$

$$\bullet \mathbf{r}_{\mathsf{MC}} = 1 - 2 \cdot \mathbf{w}_{\mathsf{MC}}$$

Calibration: r_{MC} linear to
 r_{Output}

Systematic Uncertainties

$$\mathcal{B}(B^0 \to \pi^+\pi^-)$$

 $\mathcal{B}(B^+ \to \pi^+ \pi^0)$

Source	\texttt{Belle}^a [%]	$50\frac{1}{ab}$ [%]	Source	\texttt{Belle}^a [%]	$50\frac{1}{ab}$ [%]
Signal PDF	0.50	0.06	Signal PDF	0.73	0.09
$B\overline{B}$ Bkg. Param.	1.77	0.22	$B\overline{B}$ Bkg. Param.	4.53	0.57
Tracking	0.70	0.09	Tracking	0.70	0.09
Luminosity	1.37	1.37	Luminosity	1.37	1.37
Kpi PID	1.72	0.22	Kpi PID	0.86	0.11
Ratio Cut	0.24	0.03	Ratio Cut	0.92	0.12
MC Statistics	0.15	0.02	MC Statistics	0.17	0.02
Feed-accross	1.50	0.19	Feed-accross	1.19	0.15
PHOTOS	0.80	0.80	π^{0} det. eff.	4.00	0.51
Total	3.42	1.63	Total	6.52	1.59

 $^a\,$ Belle PRD 87 031103

${\cal A}_{\sf CP}(B^0 o\pi^+\pi^-)$			_	$\mathcal{S}_{CP}(B^0 o \pi^+\pi^-)$			
Source	$Belle^{a}[10^{-2}]$	$50\frac{1}{ab}$ [%]		Source	$Belle^a [10^{-2}]$	$50\frac{1}{ab}$ [%]	
Track Helix	0	0		Track Helix	0.01	0.001	
Δt Sel.	0.01	0.001		Δt Sel.	0.03	0.004	
Missalign.	0.40	0.051		Missalign.	0.20	0.025	
Δz Bias	0.50	0.063		Δz Bias	0.40	0.051	
IP Profile	0.13	0.016		IP Profile	1.19	0.151	
Flavor Tagging	0.40	0.051		Flavor Tagging	0.31	0.039	
m_d and $ au$	0.12	0.015		m_d and $ au$	0.09	0.011	
Fit Bias	0.54	0.068		Fit Bias	0.86	0.109	
Tag-Side Int.	3.18	3.18		Tag-Side Int.	0.17	0.170	
B_{tag} Track Sel.	0.30	0.038		B_{tag} Track Sel.	0.33	0.042	
Vertex Sel.	0.37	0.047		Vertex Sel.	0.23	0.029	
MC Shape	0.15	0.019		MC Shape	0.19	0.024	
Δt Res.	0.83	0.415		Δt Res.	2.02	1.010	
Bkg. Shape	0.15	0.019		Bkg. Shape	0.28	0.035	
Bkg. NP. S.	0.37	0.047		Bkg. NP. S.	0.57	0.072	
Total	3.48	3.21]	Total	2.68	1.05	

51 ^a Belle PRD 88 092003

PhysRevLett.65.3381

 $\begin{array}{l} \Rightarrow \mbox{ Extr. } \phi_2 \mbox{ through isospin analysis:} \\ 1 \ A^{+0} = \frac{1}{\sqrt{2}}A^{+-} + A^{00} \\ 2 \ \bar{A}^{-0} = \frac{1}{\sqrt{2}}\bar{A}^{+-} + \bar{A}^{00} \end{array}$

Parametrization in hep-ph/0406263

$$|A^{00}|^{2} = \frac{1}{2}|A^{+-}|^{2} + |A^{+0}|^{2} - \sqrt{2}|A^{+-}||A^{+0}|\cos\left(\phi_{2} - \delta\right)$$
$$|\bar{A}^{00}|^{2} = \frac{1}{2}|\bar{A}^{+-}|^{2} + |A^{+0}|^{2} - \sqrt{2}|\bar{A}^{+-}||A^{+0}|\cos\left(\phi_{2} + \delta - 2\phi_{2}^{\text{eff}}\right)$$

Isospin Analysis Fit with $\mathcal{S}_{\pi^0\pi^0}$

Theoretical predictions \mathbf{x}_{theo} :

$$\begin{aligned} \mathcal{B}_{+-} &= \frac{1}{2} \left(A_{+-}^2 + \bar{A}_{+-}^2 \right) \\ \mathcal{B}_{00} &= \frac{1}{2} \left(A_{00}^2 + \bar{A}_{00}^2 \right) \\ \mathcal{B}_{+0} &= \frac{\tau_{B^+}}{\tau_{B^0}} A_{+0}^2 \\ \mathcal{A}_{+-} &= \mathcal{A}_{+-} \\ \mathcal{S}_{+-} &= \sqrt{1 - \mathcal{A}_{+-}^2} \sin \left(2 \cdot \phi_2^{\text{eff}} \right) \\ \mathcal{A}_{00} &= \frac{\bar{A}_{00}^2 - A_{00}^2}{\bar{A}_{00}^2 + A_{00}^2} \\ \mathcal{S}_{00} &= \frac{1}{\bar{A}_{00}^2 + A_{00}^2} \left(2A_{+0}^2 \sin \left(2\phi_2 \right) + A_{+-} \bar{A}_{+-} \sin \left(2\phi_2^{\text{eff}} \right) \\ &+ \sqrt{2}A_{+0} \left(A_{+-} \sin \left(\phi_2 + \delta \right) - \bar{A}_{+-} \sin \left(\phi_2 - \delta + 2\phi_2^{\text{eff}} \right) \right) \right) \end{aligned}$$

- Larger branching fractions (factor ~ 6 for \mathcal{B}_{+-} and \mathcal{B}_{+0})
- Larger reconstruction efficiencies (factor $\sim 2-4$)
- ⇒ Most precise measurement of ϕ_2 : Only 2 fold ambiguity even w/out S_{00} due to large difference between B_{00} and B_{+-} (B_{+0}). Smaller penguin contribution (less isospin breaking)
- But: Much more complicated analyses than for $B \to \pi \pi$. Difficult background modelling. Non trivial correlations between discriminating variables.
 - \Rightarrow Extrapolation of uncertainties.