Characterization of a Segmented n-Type Broad Energy Germanium Detector

Martin Schuster

Max-Planck Institute for Physics

July 21st, 2017

Physics Motivation

Experimental Setup

Detector Characteristics

Summary & Outlook

Martin Schuster

Physics Motivation

Experimental Setup

Detector Characteristics

Summary & Outlook

(中) (문) (문) (문) (문)

Physics Motivation: $0\nu\beta\beta$ Decay

Could provide information on:

- Nature of the neutrino: Dirac or Majorana?
- Inverted or Normal Hierarchy
- Possibly hints on absolute mass scale from T_{1/2}

Martin Schuster

Why Germanium?

- ▶ ⁷⁶Ge is a candidate for $0\nu\beta\beta$ and Ge is a semiconductor
- ► Can act as source and detector simultaneously → high detection efficiency
- Naturally good energy resolution
- Currently employed in experiments like GERDA and MAJORANA
- LEGEND collaboration is forming: Ton-scale germanium experiment

Martin Schuster

Physics Motivation

Experimental Setup

Detector Characteristics

Summary & Outlook

(中) (문) (문) (문) (문)

Summary & Outlook

Point Contact Detector: Detection Principle

Martin Schuster

Summary & Outlook

The Segmented Broad Energy Germanium Detector

Features

- Point-Contact detector: Distinct Pulse Shapes
- Moderate Segmentation:
 - Information on *φ* location of energy depositions

(a)

 Drifting Paths, Event Distributions, etc.

Martin Schuster

Example Pulse

Martin Schuster

Characterization of a Segmented n-Type Broad Energy Germanium Detector

ax-Planck Institute for Physics

Experimental Setup

Experimental Setup

- DAQ and Preamplifier PSU
- Source with supporting structure on top of the cryostat
- Copper ears, containing the readout electronics
- LN₂ Dewar
- Foam mat and sand bags to reduce microphonic noise

(日) (同) (三) (

Martin Schuster

Example Raw Core Pulse

Martin Schuster

Characterization of a Segmented n-Type Broad Energy Germanium Detector

lax-Planck Institute for Physics

æ

Fixed Window Method for Pulse Amplitude Determination

▶ 《 클 ▶ 《 클 ▶ 클 옛 역 laxe Planck Institute for Physic

Physics Motivation

Experimental Setup

Detector Characteristics

Summary & Outlook

(中) (문) (문) (문) (문)

.

Crystal Axes Determination

- Slow and fast crystal axes influence the drift-path and speed of the charge carriers
- The dependence of t_{5-95} on ϕ is expected to be sinusoidal:

$$t_{5-95} = C + a \cdot \sin\left[\frac{2\pi}{90}\left(\phi + \phi_{offset}
ight)
ight]$$

The parameters C, a and ϕ_{offset} were fitted to the data

Martin Schuster

ax-Planck Institute for Physic

2

Martin Schuster

Martin Schuster

/lax-Planck Institute for Physic

ax-Planck Institute for Physic

2

Localizing ϕ *Position* using Mirror Pulses

Martin Schuster

/lax-Planck Institute for Physic

Martin Schuster

Characterization of a Segmented n-Type Broad Energy Germanium Detector

lax-Planck Institute for Physics

2

lax-Planck Institute for Physic

2

Martin Schuster

Passivation Layer Studies

Martin Schuster

Characterization of a Segmented n-Type Broad Energy Germanium Detector

≣⇒

- Both segment 3 and 4 are collecting
- Truncated mirror pulses: Indication for charge trapping
- Increasing effect for smaller radii

(a)

lax-Planck Institute for Physics

Martin Schuster

Near Surface Effects: Distorted Field Lines

- Drift paths are bent towards the surface, where the electric field is very weak
- > At surface, the charge-drift slows down significantly
- This gives rise to the observed phenomena via two mechanics:
 - Incomplete charge collection: Charges cease to contribute to the pulse
 - Strongly delayed pulses: Pulses don't reach their amplitude during DAQ-window

Physics Motivation

Experimental Setup

Detector Characteristics

Summary & Outlook

(中) (문) (문) (문) (문)

Summary and Results

- Prototype detector, combining the point contact layout with a moderate segmentation.
- Localization of the crystal axes, despite tilted installation: Good agreement between top-scans and side-scans
- Reconstructing the *φ*-position using mirror pulses of non-collecting segments: Proven to be feasible
- Indication of distorted drift paths for low energy events beneath the passivated area
 The effects show a significant r dependence, yet they are independent on φ

▲ □ ▶ ▲ □ ▶ ▲

Outlook

- The detector has been moved to new, electrically cooled cryostat
- Measurements of temperature dependence of passivation layer effects and drift times in general
- Expanding and refining the event position reconstruction, including Monte-Carlo based pulse-shape libraries
- Further studies on the effect of the crystal axes (also temp. dep.)

▲ @ ▶ < ∃ ▶</p>

Glorious Times Ahead...

Thank you for your attention!

Martin Schuster

Characterization of a Segmented n-Type Broad Energy Germanium Detector

B b

ヨト ・

BACKUP

Martin Schuster

Characterization of a Segmented n-Type Broad Energy Germanium Detector

Aax-Planck Institute for Physics

h_phi30_T82K

h_phi30_T87K

h_phi30_T98K

h_phi30_T109K

lax-Planck Institute for Physic

Martin Schuster

Characterization of a Segmented n-Type Broad Energy Germanium Detector

ax-Planck Institute for Physics

2

2

Martin Schuster

Martin Schuster

2

lax-Planck Institute for Physic

Summary & Outlook

Multi-Site- vs. Single-Site-Event Discrimination

Martin Schuster

Martin Schuster

Characterization of a Segmented n-Type Broad Energy Germanium Detector

2

・ロト ・回ト ・ヨト

A/E Method

Martin Schuster

Aax-Planck Institute for Physic

2

2

Martin Schuster

Martin Schuster

2

Segmentation Cut

Martin Schuster

Characterization of a Segmented n-Type Broad Energy Germanium Detector

ax-Planck Institute for Physics

Martin Schuster

2

After the cross-talk correction and energy calibration procedure, Tab 1 gives an overview of the energy resolutions for selected γ -lines and all the segments.

		FWHM [keV]				
Source	γ -line [keV]	Core	Seg. 1	Seg. 2	Seg. 3	Seg. 4
¹³³ Ba	81	3.29	5.15	4.05	4.07	7.26
	356	2.64	4.58	3.47	3.52	6.04
⁶⁰ Co	1173	4.57	4.88	4.16	4.34	8.05
	1332	4.93	5.00	4.39	4.14	7.84
²²⁸ Th	2614	7.65				

Table: Energy resolutions as absolute FWHM in keV. The resolutions for especially characteristic γ -lines for the respective sources are given.

Segment	Boundary(i, j)	Top-scan	Side-scan
1	$\phi_{4,1}$	124.7 ± 0.6	120.0 ± 0.8
L L	$\phi_{1,4}$	181.1 ± 0.6	181.1 ± 0.8
2	<i>φ</i> _{4,2}	244.0 ± 0.6	242.5 ± 0.7
2	$\phi_{2,4}$	302.5 ± 0.6	302.1 ± 0.8
2	$\phi_{4,3}$	7.1 ± 0.5	3.8 ± 0.7
5	$\phi_{3,4}$	64.8 ± 0.6	63.5 ± 0.7
	<i>φ</i> _{3,4}	66.6 ± 0.6	62.8 ± 0.7
	$\phi_{4,1}$	123.0 ± 0.6	120.2 ± 0.8
4	<i>φ</i> _{1,4}	182.5 ± 0.5	180.8 ± 0.7
4	$\phi_{4,2}$	242.4 ± 0.6	242.3 ± 0.6
	$\phi_{2,4}$	303.2 ± 0.8	302.0 ± 0.7
	$\phi_{4,3}$	6.2 ± 0.5	3.4 ± 0.6

2

・ロン ・回 と ・ヨン ・ヨン

Martin Schuster

Scan	$\phi_{\textit{offset}}$	$\phi_{\langle 110 angle}$
Тор	-14.52 ± 0.24	37.02 ± 0.24
Side	-15.05 ± 0.30	37.55 ± 0.30

Table: The values of $\phi_{\textit{offset}}$ and $\phi_{\langle 110\rangle},$ see Eq. 14, as determined by fits to the data.

Martin Schuster

Martin Schuster

Characterization of a Segmented n-Type Broad Energy Germanium Detector

э

2

lax-Planck Institute for Physic