

Searches for diboson resonances with the ATLAS detector

Andreas Hönle

Max Planck Institute for Physics (Werner-Heisenberg-Institut)

17 July 2017

Also: ▷ Massive Neutrinos

Also: ▷ Massive Neutrinos

▷ Dark Matter/Energy

Also: ▷ Massive Neutrinos

▷ Dark Matter/Energy ▷ Gravity??

ily 2017

Many theoretical models tackle the problems the Standard Model cannot solve.

Little Higgs MSSM Composite Higgs Axion Model Minimal Walking Technicolor Baryogenesis Model

They generally predict new, heavy particles.

The two Higgs doublet model

- $\,\triangleright\,$ Two Higgs doublets: Φ_1 , Φ_2
- ▷ After EWSB: 5 Higgs bosons
 - neutral, CP-even: h, H
 - neutral CP-odd: A^0
 - charged CP-even: H^+ , H^-

▷ Unknowns:

- Ratio of vevs: $\tan\beta = v_2/v_1$
- h, H mixing angle α
- Masses of H, H^{\pm} , A^0 [h is 125 GeV SM Higgs]
- Couplings to SM particles

gluon-gluon fusion

b-associated production

A^0 decay / Bump hunting

- ▷ Multiple decays modes possible
- \triangleright Focus on

$$- h \rightarrow b \bar{b}$$

$$- Z \rightarrow \ell \ell, \nu \nu \ (\ell = e^-, \mu^-)$$

- \triangleright Investigate mass of diboson system m_{Vh}
- ▷ 0-lepton: $m_{T,Vh}$

$$m_{\rm T,Vh} = \sqrt{(p_{\rm T}^{h} + E_{\rm T}^{\rm miss})^{2} - (\vec{p}_{\rm T}^{h} + \vec{E}_{\rm T}^{\rm miss})^{2}}$$

- ▷ Background is smoothly falling
- ▷ Sharp peak at resonance mass expected

Some backgrounds (representative diagrams)

Backgrounds are suppressed by imposing cuts.

Background	Example for a good cut variable
ttbar	Mass of di-lepton system (2-lepton channel)
Z+jets	Transverse momentum of di-lepton system (2-lepton channel)
Multijet	Missing transverse energy

- > Cut values are optimized in dedicated studies
 - Can depend on m_{Vh}

Events are then **categorised**.

Quantity	Effect
Number of <i>b</i> tags	Defines I, 2, 3+ tag SR; 0 <i>b</i> -tag CR
Mass of di-quark system	Defines signal window & m _{bb} sidebands

▷ Control regions can be used to investigate backgrounds

- Some backgrounds have dedicated CRs

Post-fit distributions

Cross section time branching ratio limits

- Four models (Type I, Type II, Lepton Specific, Flipped) investigated
- ▷ Only Type II limit plot shown, others similar
- ▷ *m*_A assumed to be 300 GeV

Interesting areas:

- $\triangleright \operatorname{cos}(\beta \alpha) \to 0 \text{ (aligment limit):} \\ \mathsf{BR}(A^0 \to Zh) \text{ vanishes}$
- ▷ $tan(\beta) \rightarrow 0$: BR $(h \rightarrow b\bar{b})$ vanishes

- ▷ Type II, close to aligment limit $\cos(\beta \alpha) = 0.1$
- $ightarrow m_A > 350 \, {
 m GeV}$: $A \rightarrow t t$ becomes accessible & is dominant decay mode

- ▷ Extensions of the Standard Model required
- ▷ Many theories predict an extended Higgs sector
- ▷ Direct search for CP-odd A performed at ATLAS
- ▷ Final states: $b\bar{b}\ell^+\ell^-, b\bar{b}\nu\nu$
- ▷ No significant excess found with combined 2015+2016 data set (36 fb⁻¹)
- ▷ Exclusion limits in four different parameter spaces presented in paper
- ▷ ATLAS-CONF-2017-055 ぱ

BACKUP

Content of HVT

Additional heavy vector boson triplet

$$- \mathbf{Z'} (q = 0), \mathbf{W'} (q = \pm |e)$$

- Neutral & charged final states possible
- \triangleright |TeV $\lesssim M_0 \simeq M_{\pm}$
- ▷ Parameters: Masses, Couplings

$$\begin{array}{c} \frac{g^2 c_F}{g_V} \\ \bullet \text{ Model B } (g_V = 3) \\ \bullet \text{ Model A } (g_V = 3) \\ \bullet \text{ Model A } (g_V = 3) \\ \bullet \text{ Model A } (g_V = 1) \\ \bullet \text{ Model A } (g_V = 1) \\ g_V C_H \end{array}$$

- ▷ Choice of Model A / Model B fixes how parameters depend on each other
- ▷ Pick a point in plane spanned by couplings and scan masses

HVT Models A and B

17 July 2017

Andreas Hönle - Searches for diboson resonances with the ATLAS detector

(|)

(2)

Model A:

$$g_V c_H \simeq \frac{g^2 c_F}{g_V} \simeq \frac{g^2}{g_V}$$

Model B:

$$g_V c_H \simeq -g_V$$

$$\frac{g^2 c_F}{g_V} \simeq \frac{g^2}{g_V}$$

