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What do you measure?

We measure the particle loss of 
injection bunches.

Why do you inject so often?

To reach the high luminosity, a large 
beam current is needed. Intra-bunch 

scattering (Touschek effect~1/E3) results 
in a low beam life time of ~10min.  
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What do you measure?

We measure the particle loss of 
injection bunches.

Why do you inject so often?

To reach the high luminosity, a large 
beam current is needed. Intra-bunch 

scattering (Touschek effect~1/E3) results 
in a low beam life time of ~10min.  

Continuous Top Up Injection Scheme 
➡ frequently inject small amounts of beam 

to replace loss
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2.3  Liouville's Theorem 

Now let us return to the ‘mainstream’ of transverse dynamics. Liouville’s theorem is a conservation law 
that applies to the area occupied by a number of particles plotted in phase space. 
 

 

Fig. 2.16. Liouville’s theorem applies to this contour. 

 
 We should think of a beam of particles as a cloud of points within a closed contour in a transverse 
phase space diagram (Fig. 2.16). Liouville’s theorem tells us that this area within the contour is 
conserved. The contour is usually, but not always, an ellipse. In Fig. 2.5 we came across such an elliptical 
contour – the locus of a particle’s motion at a place where the β  function is at a maximum or minimum 
and where the major and minor axes of the upright ellipse are ඥߚߝ and ඥߝȀߚ. We could think of this 
ellipse as the locus of the particle in the beam which has the maximum amplitude of betatron motion and 
call its area, the emittance. We could also think of it as a limiting contour enclosing all the particles in the 
beam which we would again call the emittance – not of the particle but of the beam. 
 We express beam emittance in units of ʌ mm·milliradians. According to Liouville the emittance area 
will be conserved as the beam passes down a transport line or circulates in a synchrotron whatever 
magnetic focusing or bending operation we do on the beam. Even though the ellipse may appear to have 
many shapes around the accelerator its phase space area will not change (Fig. 2.17). The aspect ratio of 
the ellipse will change however. At a narrow waist, near a D quadrupole (a) in Fig. 2.17, its divergence 
will be large, while in an F quadrupole (d) where the betatron function is maximum, its divergence will 
be small. The beam is also seen at a broad waist or maximum in the beta function and a place where the 
beam is diverging. 
 In Fig. 2.18 we see how the various features of the ellipse are related to the Twiss parameters. The 
equation of the ellipse, often called the Courant and Snyder invariant, has the form 

ଶݕሻݏሺߛ  ൅ ᇱݕݕሻݏሺߙʹ ൅ ᇱଶݕሻݏሺߚ ൌ  (2.51) . ߝ

 Here y is used to mean either of the transverse displacements, x or z. The invariance of this quantity as 
we move to different points in the ring is an alternative statement of Liouville’s theorem. 
 A word of caution – another, stricter, version of Liouville's theorem states that: 

‘In the vicinity of a particle, the particle density in phase space is constant if the particles move in an 
external magnetic field or in a general field in which the forces do not depend upon velocity.’ 

 This rules out the application of Liouville's theorem to situations in which space charge forces within 
the beam play a role or when there is a velocity dependent effect such as when particles emit synchrotron 
light. However we may apply Liouville to proton beams which do not normally emit synchrotron light 
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            beta function of the beam 
• particles oscillate within this envelope around their design path 

➡ betatron oscillation

�(z)
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3.3 Instrumentation for Calorimeters 55

Figure 3.8: Schematic of the Geiger APD working principle. Cross section through the
sensitive area of a SiPM pixel [52] (left) and systematic sketch of a charge avalanche in
the depletion region (right).

The charge of the initial electron-hole pair is multiplied by a factor of the order 106 for
one fired SiPM pixel. This is the gain G of the SiPM. The gain is proportional to the
di↵erence between the bias and the breakdown voltage (called overvoltage Uo):

Qpix = G · e = Cpix · (Ubias ≠ Ubreak) = Cpix · Uo (3.9)

Cpix is the capacitance of a single pixel. It is determined by the dimensions of a pixel
and the doping of the semiconductor material. Qpix is the charge of an avalanche.
The avalanche charge is not proportional to the number of initially created electron-
hole pairs and thus to the number of incident photons on a single pixel. As seen in
Equation 3.9, the avalanche charge depends only on the pixel capacitance and the
overvoltage which is approximately the same for each pixel. So strictly speaking, every
pixel is operated in binary mode. The response of the whole APD array, on the other
hand, is proportional to the number of incident photons, provided the pixels are small
and the light source is weak enough that no pixel is hit by more than one photon
simultaneously. So SiPMs achieve a high dynamic range through a fine segmentation
of the photosensitive area. The dynamic range is the di↵erence between the largest
and the smallest (1 photon per definition) light signal a SiPM can detect. The pixel
dimensions of the SiPMs used within the T3B experiment are 50 ◊ 50 µm2.
As mentioned above, the charge avalanche of a pixel stays the same if it is hit by many
photons within the recovery time. Hence, the SiPM is subject to a saturation e↵ect
meaning that its response to strong light signals drops below linearity.

The Photon Detection E�ciency

The photon detection e�ciency ‘PDE (also referred to as PDE) describes the sensitivity
of a SiPM and is defined as the probability that a photon, hitting the photo detector
operated in Geiger mode, generates a Geiger discharge. It is the product of the quantum
e�ciency (QE), the breakdown e�ciency (BE) and a geometrical fill-factor (GF):

‘PDE = QE · BE · GF (3.10)
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the depletion region (right).

The charge of the initial electron-hole pair is multiplied by a factor of the order 106 for
one fired SiPM pixel. This is the gain G of the SiPM. The gain is proportional to the
di↵erence between the bias and the breakdown voltage (called overvoltage Uo):

Qpix = G · e = Cpix · (Ubias ≠ Ubreak) = Cpix · Uo (3.9)

Cpix is the capacitance of a single pixel. It is determined by the dimensions of a pixel
and the doping of the semiconductor material. Qpix is the charge of an avalanche.
The avalanche charge is not proportional to the number of initially created electron-
hole pairs and thus to the number of incident photons on a single pixel. As seen in
Equation 3.9, the avalanche charge depends only on the pixel capacitance and the
overvoltage which is approximately the same for each pixel. So strictly speaking, every
pixel is operated in binary mode. The response of the whole APD array, on the other
hand, is proportional to the number of incident photons, provided the pixels are small
and the light source is weak enough that no pixel is hit by more than one photon
simultaneously. So SiPMs achieve a high dynamic range through a fine segmentation
of the photosensitive area. The dynamic range is the di↵erence between the largest
and the smallest (1 photon per definition) light signal a SiPM can detect. The pixel
dimensions of the SiPMs used within the T3B experiment are 50 ◊ 50 µm2.
As mentioned above, the charge avalanche of a pixel stays the same if it is hit by many
photons within the recovery time. Hence, the SiPM is subject to a saturation e↵ect
meaning that its response to strong light signals drops below linearity.

The Photon Detection E�ciency

The photon detection e�ciency ‘PDE (also referred to as PDE) describes the sensitivity
of a SiPM and is defined as the probability that a photon, hitting the photo detector
operated in Geiger mode, generates a Geiger discharge. It is the product of the quantum
e�ciency (QE), the breakdown e�ciency (BE) and a geometrical fill-factor (GF):

‘PDE = QE · BE · GF (3.10)

• working principle: 
- high voltage (~60V) creates a large electrical field 
- photon creates an electron-hole pair 
- while acceleration of the charge carriers to the 

anode/cathode, collisions of the charge carriers 
create again new e-h pairs 
➡ avalanche of charge carriers
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- array of in series connected avalanche 

photodiodes 
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The charge of the initial electron-hole pair is multiplied by a factor of the order 106 for
one fired SiPM pixel. This is the gain G of the SiPM. The gain is proportional to the
di↵erence between the bias and the breakdown voltage (called overvoltage Uo):

Qpix = G · e = Cpix · (Ubias ≠ Ubreak) = Cpix · Uo (3.9)

Cpix is the capacitance of a single pixel. It is determined by the dimensions of a pixel
and the doping of the semiconductor material. Qpix is the charge of an avalanche.
The avalanche charge is not proportional to the number of initially created electron-
hole pairs and thus to the number of incident photons on a single pixel. As seen in
Equation 3.9, the avalanche charge depends only on the pixel capacitance and the
overvoltage which is approximately the same for each pixel. So strictly speaking, every
pixel is operated in binary mode. The response of the whole APD array, on the other
hand, is proportional to the number of incident photons, provided the pixels are small
and the light source is weak enough that no pixel is hit by more than one photon
simultaneously. So SiPMs achieve a high dynamic range through a fine segmentation
of the photosensitive area. The dynamic range is the di↵erence between the largest
and the smallest (1 photon per definition) light signal a SiPM can detect. The pixel
dimensions of the SiPMs used within the T3B experiment are 50 ◊ 50 µm2.
As mentioned above, the charge avalanche of a pixel stays the same if it is hit by many
photons within the recovery time. Hence, the SiPM is subject to a saturation e↵ect
meaning that its response to strong light signals drops below linearity.

The Photon Detection E�ciency

The photon detection e�ciency ‘PDE (also referred to as PDE) describes the sensitivity
of a SiPM and is defined as the probability that a photon, hitting the photo detector
operated in Geiger mode, generates a Geiger discharge. It is the product of the quantum
e�ciency (QE), the breakdown e�ciency (BE) and a geometrical fill-factor (GF):

‘PDE = QE · BE · GF (3.10)

• working principle: 
- high voltage (~60V) creates a large electrical field 
- photon creates an electron-hole pair 
- while acceleration of the charge carriers to the 

anode/cathode, collisions of the charge carriers 
create again new e-h pairs 
➡ avalanche of charge carriers
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• SiPM signal is a 
superposition of single 
pixel signals
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• scintillator and SiPM are mounted on PCB with 
onboard preamplifier 
- light tight wrapped
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The Detector 
A scintillating tile with SiPM readout

• scintillator and SiPM are mounted on PCB with 
onboard preamplifier 
- light tight wrapped

Picoscope 6404D
• 4 channel + ext. trigger channel 
• 8 bit vertical resolution 
• 800 ps sampling time 
• records up to 40 ms per channel
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• 4 on outer side of ring 
• 4 on inner side ring
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Online Monitor
The Online Monitor

800 μs = 80 turns

Raw Signal
Particle Rate

Beam Parameters
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Geometry Check

Sanity Check: Speed of light 
• forward and backward region are about 3 m apart 

• bunches clearly distinguishable 
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Time Properties of the Beam

Injection background in LER

• small signals in the first 
revolutions ~107 μs after trigger 

• very large signals starting ~12 
turns after first arrival 

• signals substantially reduced 
after 100 μs of high activity
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Injection background in LER
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Arrival of First Particles

Injection background in LER with double bunch injection 
• zoom into the first 200 μs 

• first signal arrives ~107 μs after trigger 
• mostly after every turn a signal 

➡ signal at 167 μs is missing 
➡ signal at 197 μs is not clearly visible 
➡ Betatron oscillation frequency is 44.59/Turn in LER (horiz.)
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Arrival of First Particles

Injection background in LER with double bunch injection 
• zoom into the first 200 μs 

?

• first signal arrives ~107 μs after trigger 
• mostly after every turn a signal 

➡ signal at 167 μs is missing 
➡ signal at 197 μs is not clearly visible 
➡ Betatron oscillation frequency is 44.59/Turn in LER (horiz.)



17HENDRIK WINDEL
hwindel@mpp.mpg.de

YSW - Schloss Ringberg  
July 19th 2017

Reference Injection: 
LER vs HER

• General observation: 
➡ LER injection results in much higher backgrounds than HER injection 
➡ very different timing behavior; HER background appears promptly, LER 

with substantial delay



18HENDRIK WINDEL
hwindel@mpp.mpg.de

YSW - Schloss Ringberg  
July 19th 2017

Changing Parameters: 
Phase Shift

• Substantially increased background 
• Some impact on timing properties - phase shift injections used to study 

timing patterns later
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A Closer Look: 
HER

Identify patterns in the time  
structure of injection signals: 

• plot dt for all bin pairs, 
weighted by the product 
of amplitudes 

• 130 μs  super structure 
• on-off pattern in 

background
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Summary & Outlook

• commissioning of SuperKEKB accelerator will continue Feb 2018 
➡ CLAWS takes part in a modified version

• commissioning of SuperKEKB accelerator started in Feb 2016 
• CLAWS - as part of Beast - measured timing properties and particle 

rates coming from charged particles from injection background 
➡ the system is capable of measuring the single bunches



21

BACKUP!

HENDRIK WINDEL
hwindel@mpp.mpg.de

YSW - Schloss Ringberg  
July 19th 2017



22HENDRIK WINDEL
hwindel@mpp.mpg.de

YSW - Schloss Ringberg  
July 19th 2017

Radiation Effect on CLAWS
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• Minimum Ionizing Particle (MIP) calibration

CLAWS 

Detector
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Tiles

Temperature

Sensor

Calibration
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• follows Landau convoluted Gaussian distribution 
- extraction of the most probable value here: 
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Sensor Response [p.e.]
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Sensor
Individual

14.80 p.e.
Calib. Average:

16 p.e.
Pre-Calib.:Calibration Results

• final average 14.80 p.e.  
with ±1.5 p.e. spread 

• shown errors are of 
statistical origin 

• systematic error due to 
packaging much larger
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• daughter bunch with full energy is 
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Betatron oscillations together with the oscillating daughter-
mother bunches results in a huge particle loss 

• beam-beam interactions 
• contact with beam pipe


