Scintillator tiles with SiPM readout for fast timing in SuperKEKB commissioning

Outline

- Reminder: Commissioning Phase I
- Excursion into Particle Injection Physics
- The CLAWS Detector
- Summary and Outlook

July 19th 2017

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

IMPRS Young Scientist Workshop 2017 Schloss Ringberg - Hendrik Windel

BEAM EXORCISM FOR **A ST**ABLE BELLE EXPERIMENT **II**

HENDRIK WINDEL hwindel@mpp.mpg.de

BEAST **||** SuperKEKB commissioning

BEAM EXORCISM FOR **A ST**ABLE BELLE EXPERIMENT **II**

Three commissioning phases:

- ✤ Phase 1 (Feb 2016 June 2016):
 - no Belle II detector
 - no beam optics for focussing
 - no collisions

BEAST **II** SuperKEKB commissioning

BEAM EXORCISM FOR **A ST**ABLE BELLE EXPERIMENT **II**

Three commissioning phases:

- ✤ Phase 1 (Feb 2016 June 2016):
 - no Belle II detector
 - no beam optics for focussing
 - no collisions
- Phase II (starting early 2018):
 - Belle II detector rolled in without the final vertex detectors
 - final beam optics are installed

BEAST **II** SuperKEKB commissioning

BEAM EXORCISM FOR **A ST**ABLE BELLE EXPERIMENT **II**

Three commissioning phases:

- ✤ Phase 1 (Feb 2016 June 2016):
 - no Belle II detector
 - no beam optics for focussing
 - no collisions
- Phase II (starting early 2018):
 - Belle II detector rolled in without the final vertex detectors
 - final beam optics are installed
- Phase III (start early 2019):
 - final Belle II detector composition
 - final physics runs

BEAST **II** SuperKEKB commissioning

BEAM EXORCISM FOR **A ST**ABLE BELLE EXPERIMENT **II**

Three commissioning phases:

- ✤ Phase 1 (Feb 2016 June 2016):
 - no Belle II detector
 - no beam optics for focussing
 - no collisions
- Phase II (starting early 2018):
 - Belle II detector rolled in without the final vertex detectors
 - final beam optics are installed
- Phase III (start early 2019):
 - final Belle II detector composition
 - final physics runs

HENDRIK WINDEL hwindel@mpp.mpg.de

What do you measure?

We measure the particle loss of injection bunches.

Why do you inject so often?

To reach the high luminosity, a large beam current is needed. Intra-bunch scattering (Touschek effect~1/E³) results in a low beam life time of ~10min.

HENDRIK WINDEL hwindel@mpp.mpg.de What do you measure?

We measure the particle loss of injection bunches.

Why do you inject so often?

To reach the high luminosity, a large beam current is needed. Intra-bunch scattering (Touschek effect~1/E³) results in a low beam life time of ~10min.

З

Continuous Top Up Injection Scheme

 frequently inject small amounts of beam to replace loss

HENDRIK WINDEL hwindel@mpp.mpg.de YSW - <mark>Sc</mark>hloss Ringberg Jul<mark>y</mark> 19th 2017

- x: bending plane
- y: vertical plane
- z: tangential to beam direction

x: bending plane

- y: vertical plane
- z: tangential to beam direction

A SuperKEKB Bunch in Numbers

- bunch length: 5.0 to 6.0 mm
- $\sigma_x = 10 \ \mu m$, $\sigma_y = 59 \ nm$ (at IP)
- 10¹¹ electrons per bunch
- 2500 bunches per ring

x: bending plane y: vertical plane

z: tangential to beam direction

A SuperKEKB Bunch in Numbers

- bunch length: 5.0 to 6.0 mm
- $\sigma_x = 10 \ \mu m$, $\sigma_y = 59 \ nm$ (at IP)
- 10¹¹ electrons per bunch
- 2500 bunches per ring

- particle density is three dimensional Gaussian
- phase space area stays constant during circulation
 - ➡ Liouville's Theorem

HENDRIK WINDEL hwindel@mpp.mpg.de

x: bending plane

- y: vertical plane
- z: tangential to beam direction

A SuperKEKB Bunch in Numbers

- bunch length: 5.0 to 6.0 mm
- $\sigma_x = 10 \ \mu m$, $\sigma_y = 59 \ nm$ (at IP)
- 10¹¹ electrons per bunch
- 2500 bunches per ring

• particle density is three dimensional Gaussian

YSW - Schloss Ringberg July 19th 2017

- phase space area stays constant during circulation
 - ➡ Liouville's Theorem

HENDRIK WINDEL hwindel@mpp.mpg.de

HENDRIK WINDEL hwindel@mpp.mpg.de

YSW - Schloss Ringberg July 19th 2017

HENDRIK WINDEL hwindel@mpp.mpg.de

YSW - Schloss Ringberg July 19th 2017

HENDRIK WINDEL hwindel@mpp.mpg.de YSW - Schloss Ringberg July 19th 2017

HENDRIK WINDEL hwindel@mpp.mpg.de

YSW - Schloss Ringberg July 19th 2017

HENDRIK WINDEL hwindel@mpp.mpg.de

HENDRIK WINDEL hwindel@mpp.mpg.de

YSW - Schloss Ringberg July 19th 2017

HENDRIK WINDEL hwindel@mpp.mpg.de

YSW - Schloss Ringberg July 19th 2017

HENDRIK WINDEL hwindel@mpp.mpg.de

YSW - Schloss Ringberg July 19th 2017

HENDRIK WINDEL hwindel@mpp.mpg.de

YSW - Schloss Ringberg July 19th 2017

HENDRIK WINDEL hwindel@mpp.mpg.de

YSW - Schloss Ringberg July 19th 2017

betatron oscillation

HENDRIK WINDEL hwindel@mpp.mpg.de YSW - Schloss Ringberg July 19th 2017

Top Up Injection	 daughter bunch with 	th full energy is
SEPTUM	 no acceleration daughter bunch oscillations unti phase space of DEFOCUSSING MAGNET 	in ring in the storage ring does large betatron it merges in the the mother bunch Focussing MAGNET
Design Path		
Focussing		

MAGNET

HENDRIK WINDEL hwindel@mpp.mpg.de YSW - Schloss Ringberg July 19th 2017

YSW - Schloss Ringberg July 19th 2017

6

HENDRIK WINDEL hwindel@mpp.mpg.de

YSW - Schloss Ringberg July 19th 2017

YSW - Schloss Ringberg July 19th 2017

6

HENDRIK WINDEL hwindel@mpp.mpg.de

YSW - Schloss Ringberg July 19th 2017

YSW - Schloss Ringberg July 19th 2017

YSW - Schloss Ringberg July 19th 2017

YSW - Schloss Ringberg July 19th 2017

YSW - Schloss Ringberg July 19th 2017

YSW - Schloss Ringberg July 19th 2017

HENDRIK WINDEL hwindel@mpp.mpg.de

YSW - Schloss Ringberg July 19th 2017

7

HENDRIK WINDEL hwindel@mpp.mpg.de

HENDRIK WINDEL hwindel@mpp.mpg.de

YSW - Schloss Ringberg July 19th 2017

8

Goal: Damping time estimation to gate the Belle II detector for crossing noisy bunches

HENDRIK WINDEL hwindel@mpp.mpg.de

HENDRIK WINDEL hwindel@mpp.mpg.de YSW - Schloss Ringberg July 19th 2017

- scintillator shape taken from CALICE hadron calorimeter for ILC
 - material: POPOP doped Polystyrene
 - charged particles (e.g. muons, electrons) cross the tile and collide with molecules and excite them
 - emission of ~420 nm photons in subsequent relaxation

HENDRIK WINDEL hwindel@mpp.mpg.de YSW - Schloss Ringberg July 19th 2017

- scintillator shape taken from CALICE hadron calorimeter for ILC
 - material: POPOP doped Polystyrene
 - charged particles (e.g. muons, electrons)
 cross the tile and collide with molecules
 and excite them
 - emission of ~420 nm photons in subsequent relaxation

HENDRIK WINDEL hwindel@mpp.mpg.de YSW - Schloss Ringberg July 19th 2017

- silicon photomultiplier (SiPM) reads out the scintillator
 - array of in series connected avalanche photodiodes
 - capable of detection single photons

Geiger mode

- hole
- electron

- silicon photomultiplier (SiPM) reads out the scintillator
 - array of in series connected avalanche photodiodes
 - capable of detection single photons
- working principle:
 - high voltage (~60V) creates a large electrical field
 - photon creates an electron-hole pair
 - while acceleration of the charge carriers to the anode/cathode, collisions of the charge carriers create again new e-h pairs

YSW - Schloss Ringberg July 19th 2017

avalanche of charge carriers

- silicon photomultiplier (SiPM) reads out the scintillator
 - array of in series connected avalanche photodiodes
 - capable of detection single photons
- working principle:
 - high voltage (~60V) creates a large electrical field
 - photon creates an electron-hole pair
 - while acceleration of the charge carriers to the anode/cathode, collisions of the charge carriers create again new e-h pairs
 - avalanche of charge carriers

 SiPM signal is a superposition of single pixel signals

HENDRIK WINDEL hwindel@mpp.mpg.de

HENDRIK WINDEL hwindel@mpp.mpg.de

YSW - Schloss Ringberg July 19th 2017

- scintillator and SiPM are mounted on PCB with onboard preamplifier
 - light tight wrapped

HENDRIK WINDEL hwindel@mpp.mpg.de

Picoscope 6404D

- scintillator and SiPM are mounted on PCB with onboard preamplifier
 - light tight wrapped

- 4 channel + ext. trigger channel
- 8 bit vertical resolution
- 800 ps sampling time
- records up to 40 ms per channel

HENDRIK WINDEL hwindel@mpp.mpg.de

The CLAWS System

SCINTILLATOR LIGHT AND WAVEFORM SENSORS

HENDRIK WINDEL hwindel@mpp.mpg.de YSW - Schloss Ringberg July 19th 2017

The CLAWS System

SCINTILLATOR LIGHT AND WAVEFORM SENSORS

- 4 on outer side of ring
- 4 on inner side ring

HENDRIK WINDEL hwindel@mpp.mpg.de

The CLAWS System

SCINTILLATOR LIGHT AND WAVEFORM SENSORS

- 4 on outer side of ring
- 4 on inner side ring

12

YSW - Schloss Ringberg July 19th 2017

HENDRIK WINDEL hwindel@mpp.mpg.de

The Online Monitor

HENDRIK WINDEL hwindel@mpp.mpg.de YSW - Schloss Ringberg July 19th 2017

The Online Monitor

HENDRIK WINDEL hwindel@mpp.mpg.de YSW - Schloss Ringberg July 19th 2017

The Online Monitor

HENDRIK WINDEL hwindel@mpp.mpg.de YSW - Schloss Ringberg July 19th 2017

The Online Monitor

YSW - Schloss Ringberg July 19th 2017

13

HENDRIK WINDEL hwindel@mpp.mpg.de

The Online Monitor

YSW - Schloss Ringberg July 19th 2017

13

HENDRIK WINDEL hwindel@mpp.mpg.de

Geometry Check

Sanity Check: Speed of light

- forward and backward region are about 3 m apart
 - bunches clearly distinguishable

Injection background in LER

- small signals in the first revolutions ~107 µs after trigger
- very large signals starting ~12 turns after first arrival
- signals substantially reduced after 100 µs of high activity

YSW - Schloss Ringberg July 19th 2017

HENDRIK WINDEL hwindel@mpp.mpg.de

Injection background in LER

- small signals in the first revolutions ~107 µs after trigger
- very large signals starting ~12 turns after first arrival
- signals substantially reduced after 100 µs of high activity

YSW - Schloss Ringberg July 19th 2017

HENDRIK WINDEL hwindel@mpp.mpg.de

Injection background in LER

- small signals in the first revolutions ~107 µs after trigger
- very large signals starting ~12 turns after first arrival
- signals substantially reduced after 100 µs of high activity

YSW - Schloss Ringberg July 19th 2017

HENDRIK WINDEL hwindel@mpp.mpg.de

Injection background in LER

- small signals in the first revolutions ~107 µs after trigger
- very large signals starting ~12 turns after first arrival
- signals substantially reduced after 100 µs of high activity

YSW - Schloss Ringberg July 19th 2017

HENDRIK WINDEL hwindel@mpp.mpg.de

Arrival of First Particles

Injection background in LER with double bunch injection

- zoom into the first 200 μs
 - first signal arrives ~107 µs after trigger
 - mostly after every turn a signal
 - ➡ signal at 167 µs is missing
 - → signal at 197 µs is not clearly visible
 - → Betatron oscillation frequency is 44.59/Turn in LER (horiz.)

Arrival of First Particles

Injection background in LER with double bunch injection

- zoom into the first 200 μs
 - first signal arrives ~107 µs after trigger
 - mostly after every turn a signal
 - ➡ signal at 167 µs is missing
 - → signal at 197 µs is not clearly visible
 - → Betatron oscillation frequency is 44.59/Turn in LER (horiz.)

Arrival of First Particles

Injection background in LER with double bunch injection

- zoom into the first 200 μs
 - first signal arrives ~107 µs after trigger
 - mostly after every turn a signal
 - ➡ signal at 167 µs is missing
 - → signal at 197 µs is not clearly visible
 - → Betatron oscillation frequency is 44.59/Turn in LER (horiz.)

Reference Injection: LER vs HER

- General observation:
 - LER injection results in much higher backgrounds than HER injection
 - very different timing behavior; HER background appears promptly, LER with substantial delay

Changing Parameters: Phase Shift

- Substantially increased background
- Some impact on timing properties phase shift injections used to study timing patterns later

A Closer Look: HER

Identify patterns in the time structure of injection signals:

- plot dt for all bin pairs, weighted by the product of amplitudes
- 130 µs super structure
- on-off pattern in background

YSW - Schloss Ringberg July 19th 2017

HENDRIK WINDEL hwindel@mpp.mpg.de

Summary & Outlook

- commissioning of SuperKEKB accelerator started in Feb 2016
- CLAWS as part of Beast measured timing properties and particle rates coming from charged particles from injection background
 - the system is capable of measuring the single bunches

• commissioning of SuperKEKB accelerator will continue Feb 2018

YSW - Schloss Ringberg July 19th 2017

20

CLAWS takes part in a modified version

BACKUP!

YSW - Schloss Ringberg July 19th 2017
Radiation Effect on CLAWS

SiPM darkrate measurement:

- dark rate raised by factor 100
- photon events smear
- 4 p.e. rate still low
 - ➡ no significant impact

HENDRIK WINDEL hwindel@mpp.mpg.de

22

Radiation Effect on CLAWS

SiPM darkrate measurement:

- dark rate raised by factor 100
- photon events smear
- 4 p.e. rate still low
 - ➡ no significant impact

HENDRIK WINDEL hwindel@mpp.mpg.de

22

Radiation Effect on CLAWS

SiPM darkrate measurement:

- dark rate raised by factor 100
- photon events smear
- 4 p.e. rate still low

YSW - Schloss Ringberg July 19th 2017

➡ no significant impact

DEAST IL

HENDRIK WINDEL hwindel@mpp.mpg.de

Minimum Ionizing Particle (MIP) calibration

Minimum Ionizing Particle (MIP) calibration

HENDRIK WINDEL hwindel@mpp.mpg.de

YSW - Schloss Ringberg July 19th 2017

100

Minimum Ionizing Particle (MIP) calibration

50

0

0

HENDRIK WINDEL hwindel@mpp.mpg.de

200

Time [ns]

150

YSW - Schloss Ringberg July 19th 2017

Minimum Ionizing Particle (MIP) calibration

 $1p \Delta q \ge \frac{1}{2} t$

hwindel@mpp.mpg.de

- Minimum Ionizing Particle (MIP) calibration
- follows Landau convoluted Gaussian distribution
 - extraction of the most probable value here:

23

~15 p.e.

Calibration Results

- final average 14.80 p.e.
 with ±1.5 p.e. spread
- shown errors are of statistical origin
- systematic error due to packaging much larger

HENDRIK WINDEL hwindel@mpp.mpg.de

July 19th 2017

HENDRIK WINDEL hwindel@mpp.mpg.de

YSW - Schloss Ringberg July 19th 2017

25

YSW - Schloss Ringberg July 19th 2017

25

YSW - Schloss Ringberg July 19th 2017

25

YSW - Schloss Ringberg July 19th 2017

25

daughter bunch with **full energy** is guided into the main ring

YSW - Schloss Ringberg July 19th 2017

26

- no acceleration in the storage ring

SEPTUM

daughter bunch with **full energy** is guided into the main ring

YSW - Schloss Ringberg July 19th 2017

26

- no acceleration in the storage ring

daughter bunch with **full energy** is guided into the main ring

YSW - Schloss Ringberg July 19th 2017

26

- no acceleration in the storage ring

daughter bunch with **full energy** is guided into the main ring

YSW - Schloss Ringberg July 19th 2017

26

- no acceleration in the storage ring

Top Up Injection	 daughter b guided into no acce oscillate until me of mothe 	 daughter bunch with full energy is guided into the main ring no acceleration in the storage ring oscillates around mother bunch until merging into the phase space of mother bunch 		
REAL PATH	DEFOCUSSING MAGNET	Kicker	Focussing Magnet	
DESIGN PATH FOCUSSING MAGNET				

YSW - Schloss Ringberg July 19th 2017

YSW - Schloss Ringberg July 19th 2017

YSW - Schloss Ringberg July 19th 2017

YSW - Schloss Ringberg July 19th 2017

