Search for supersymmetry with displaced dileptons at the ATLAS experiment

Dominik Krauss

Max-Planck-Institut für Physik

July 17, 2017
$\|_{\Delta_{p}} \cdot \Delta_{q} \geqslant \frac{1}{2} t$
Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

- Symmetry between fermions and bosons
- Every Standard Model particle gets superpartner
- Spin differs by $1 / 2$
- Minimal supersymmetric Standard Model:

Quarks		Gauge Bosons	Higgs Bosons
u	C	t	γ
d	s	b	h^{0}
Leptons			Z^{0}
$e^{ \pm}$	$\mu^{ \pm}$	$\tau^{ \pm}$	H^{0}
v_{e}	v_{μ}	v_{τ}	g

Search for displaced dileptons

- Search for massive long-lived particles decaying to two charged leptons (e or μ)
- Experimental signature: Displaced vertices in the inner detector with two leptons
- Sensitive to lifetimes of about 1 ps to 1 ns
- Model independent search interpreted in supersymmetric models

Example of a R-parity violating model

Displaced vertex selection

- Displaced vertex with two oppositely charged leptons ($e^{+} e^{-}, e^{ \pm} \mu^{\mp}$ or $\mu^{+} \mu^{-}$)
- Displacement: 4 mm in transverse plane to all $p p$ collisions of the brunch crossing
- Fiducial volume:

- Vertices inside detector material are vetoed
- Invariant mass $m_{\mathrm{DV}}>10 \mathrm{GeV}$

Signal efficiency

- Total vertex selection efficiency always below 20%
\rightarrow Main efficiency loss from vertex reconstruction efficiency ($\approx 20-30 \%$)
- Significantly higher efficiencies if the long-lived particle ($\tilde{\chi}_{1}^{0}$) heavy
\rightarrow More energy to trigger on

Background sources of displaced vertices

- Plot shows origin of displaced vertices with two tracks in a $t \bar{t}$ Monte Carlo sample
- Mostly vertices without leptons
- Random crossing of tracks dominant background for $m_{\mathrm{DV}}>10 \mathrm{GeV}$

Dilepton vertices from hadron decays

- Validation region on data with inverted mass cut: $m_{\mathrm{DV}}<10 \mathrm{GeV}$
- Most $\mu \mu$ vertices from displaced J / ψ particles of B-hadron decays
- No dilepton vertex with $m_{\mathrm{DV}}>5.2 \mathrm{GeV}$ observed
\rightarrow Background from hadron decays negligible

Random crossings

- Unrelated lepton tracks can randomly cross and form a vertex
- Dominant background of this search

Random crossings

- Unrelated lepton tracks can randomly cross and form a vertex
- Dominant background of this search
- Estimation procedure for signal regions:
- Collect all electrons and muons in data passing our selection criteria
- Randomly select lepton pairs from this collection
- Unrelated lepton tracks can randomly cross and form a vertex
- Dominant background of this search
- Estimation procedure for signal regions:
- Collect all electrons and muons in data passing our selection criteria
- Randomly select lepton pairs from this collection
- Run vertex algorithm on each pair
- Count number of vertices passing vertex selection
- Unrelated lepton tracks can randomly cross and form a vertex
- Dominant background of this search
- Estimation procedure for signal regions:
- Collect all electrons and muons in data passing our selection criteria
- Randomly select lepton pairs from this collection
- Run vertex algorithm on each pair
- Count number of vertices passing vertex selection
- Calculate crossing probability $p_{\text {xing }}=\frac{\text { Number of vertices found in this procedure }}{\text { Number of lepton pairs used }}$
- Estimate: Number of lepton pairs in data $\times p_{\text {xing }}$

Validation of random crossing estimation

- Validation region: Same procedure using vertices with two non-leptonic tracks
- Very similar vertex selection as in signal regions
- Prediction agrees within 20% to observation:

Background estimate for signal regions

SR	$N_{v x}^{\text {est }} / 10^{-4}$
$e e$	1.1 ± 0.3 (stat.) ${ }_{-0.5}^{+0.3}$ (syst.)
$e \mu$	6.3 ± 2.0 (stat.) ${ }_{-2.3}^{+1.4}$ (syst.)
$\mu \mu$	5.8 ± 2.4 (stat.) ${ }_{-3.8}^{+1.3}$ (syst.)

- Random crossing background is of order 10^{-4} for all SRs
\rightarrow Any vertex observed would hint for a signal
- One of the smallest backgrounds estimated for an ATLAS search
- Total uncertainties on the estimates not larger than 80%

Event display of a dicosmic event

Cosmic muons

- Cosmic muon sometimes reconstructed as a back-to-back muon pair
- Back-to-backness: $\Delta R_{\text {cosmic }}=\sqrt{\left(\eta_{1}+\eta_{2}\right)^{2}+(|\Delta \phi|-\pi)^{2}}$
- Veto cosmic muons in signal regions by requiring: $\Delta R_{\text {cosmic }}>0.04$
- Invert cosmic veto to study back-to-backness of cosmic muons:

- Model-independent search for displaced vertices with two leptons
- Interpreted in supersymmetric models
- Dominant background from random crossings of leptons
- Data-driven estimate of random crossings
- Background is of order 10^{-4} for all SRs
- Potential signal can be identified very clearly in data

