Search for supersymmetry with displaced dileptons at the ATLAS experiment

Dominik Krauss

Max-Planck-Institut für Physik

July 17, 2017

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

- Symmetry between fermions and bosons
- Every Standard Model particle gets superpartner
- Spin differs by 1/2
- Minimal supersymmetric Standard Model:

- Search for massive long-lived particles decaying to two charged leptons (e or μ)
- Experimental signature: Displaced vertices in the inner detector with two leptons
- Sensitive to lifetimes of about 1 ps to 1 ns
- Model independent search interpreted in supersymmetric models

Example of a *R*-parity violating model

- Displaced vertex with two oppositely charged leptons (e^+e^- , $e^\pm\mu^\mp$ or $\mu^+\mu^-$)
 - Displacement: 4 mm in transverse plane to all pp collisions of the brunch crossing
 - Fiducial volume:

- Vertices inside detector material are vetoed
- Invariant mass $m_{\rm DV} > 10\,{\rm GeV}$

• Total vertex selection efficiency always below 20%

 \rightarrow Main efficiency loss from vertex reconstruction efficiency (\approx 20 - 30%)

- Significantly higher efficiencies if the long-lived particle ($\tilde{\chi}^0_1)$ heavy
 - \rightarrow More energy to trigger on

- Plot shows origin of displaced vertices with two tracks in a $t\bar{t}$ Monte Carlo sample
- Mostly vertices without leptons
- $\bullet\,$ Random crossing of tracks dominant background for $m_{\rm DV}>10\,{\rm GeV}$

- $\bullet\,$ Validation region on data with inverted mass cut: $m_{\rm DV} < 10\,{\rm GeV}$
- Most $\mu\mu$ vertices from displaced J/ψ particles of B-hadron decays
- No dilepton vertex with $m_{\rm DV} > 5.2\,{\rm GeV}$ observed
 - \rightarrow Background from hadron decays negligible

- Unrelated lepton tracks can randomly cross and form a vertex
- Dominant background of this search

- Unrelated lepton tracks can randomly cross and form a vertex
- Dominant background of this search
- Estimation procedure for signal regions:
 - Collect all electrons and muons in data passing our selection criteria
 - Randomly select lepton pairs from this collection

- Unrelated lepton tracks can randomly cross and form a vertex
- Dominant background of this search
- Estimation procedure for signal regions:
 - · Collect all electrons and muons in data passing our selection criteria
 - Randomly select lepton pairs from this collection
 - Run vertex algorithm on each pair
 - Count number of vertices passing vertex selection

- Unrelated lepton tracks can randomly cross and form a vertex
- Dominant background of this search
- Estimation procedure for signal regions:
 - · Collect all electrons and muons in data passing our selection criteria
 - Randomly select lepton pairs from this collection
 - Run vertex algorithm on each pair
 - Count number of vertices passing vertex selection
 - Calculate crossing probability $p_{xing} = \frac{\text{Number of vertices found in this procedure}}{\text{Number of lepton pairs used}}$
 - Estimate: Number of lepton pairs in data $\times p_{xing}$

- Validation region: Same procedure using vertices with two non-leptonic tracks
- Very similar vertex selection as in signal regions
- Prediction agrees within 20% to observation:

SR	$N_{ m vx}^{est}/10^{-4}$
ee	$1.1\pm0.3~{\rm (stat.)}~^{+0.3}_{-0.5}~{\rm (syst.)}$
$e\mu$	$6.3\pm2.0~{\rm (stat.)}~^{+1.4}_{-2.3}~{\rm (syst.)}$
$\mu\mu$	$5.8 \pm 2.4 \ {\rm (stat.)} \ {}^{+1.3}_{-3.8} \ {\rm (syst.)}$

- $\bullet\,$ Random crossing background is of order 10^{-4} for all SRs
 - \rightarrow Any vertex observed would hint for a signal
- One of the smallest backgrounds estimated for an ATLAS search
- $\bullet\,$ Total uncertainties on the estimates not larger than $80\%\,$

Event display of a dicosmic event

Cosmic muons

- Cosmic muon sometimes reconstructed as a back-to-back muon pair
- Back-to-backness: $\Delta R_{\text{cosmic}} = \sqrt{(\eta_1 + \eta_2)^2 + (|\Delta \phi| \pi)^2}$
- Veto cosmic muons in signal regions by requiring: $\Delta R_{\text{cosmic}} > 0.04$
- Invert cosmic veto to study back-to-backness of cosmic muons:

- Model-independent search for displaced vertices with two leptons
- Interpreted in supersymmetric models
- Dominant background from random crossings of leptons
- Data-driven estimate of random crossings
- $\bullet\,$ Background is of order 10^{-4} for all SRs
- Potential signal can be identified very clearly in data