Alexander Merle

MPP Munich

Germany

 $\int \Delta p \cdot \Delta q \ge \frac{1}{2} t$

MAX-PLANCK-GESELLSCHAFT

<u>Based on</u>: Caldwell, AM, Schulz, Tolzauer: 1705.01945 [hep-ph]

IMPRS Young Scientist Workshop, Ringberg Castle, 19-07-2017

Alexander Merle

MPP Munich

Germany

 $\int \Delta p \cdot \Delta q \ge \frac{1}{2} t$

MAX-PLANCK-GESELLSCHAFT

Based on: Theory Caldwell, AM, Schulz, Tolzauer: 1705.01945 [hep-ph]

IMPRS Young Scientist Workshop, Ringberg Castle, 19-07-2017

Alexander Merle

MPP Munich

Germany

 $7 \Delta p \cdot \Delta q \ge \frac{1}{2} t$

MAX-PLANCK-GESELLSCHAFT

Based on: Theory Caldwell, AM, Schulz, Totzauer: 1705.01945 [hep-ph] Experiment

IMPRS Young Scientist Workshop, Ringberg Castle, 19-07-2017

Alexander Merle

MPP Munich

Germany

 $Ap \cdot \Delta q \ge \pm t$

MAX-PLANCK-GESELLSCHAFT

Theory

Based on: Caldwell, AM, Schulz, Tolzauer: 1705.01945 [hep-ph] Ph.D Experiment IMPRS^{*}Young Scientist Workshop, Ringberg Castle, 19-07-2017

<u>Note to start:</u> This project touches nearly all groups at MPP!!!

Contents:

1. Our basic idea

2. Aspects to know about:

- Leptonic mixing
- Neutrinoless double beta decay
- Neutrinos in Cosmology
- Bayesian Statistics
- 3. Our final results
- 4. Conclusions

- We obtain information on neutrinos from various sources:
- oscillation experiments -> $\Delta m^{2^{1}}s$, θ_{ij}
- $0\nu\beta\beta$ -> $m_{ee} = f(m_k, \theta_{ij}, \Phi_l)$
- cosmology -> $\Sigma = m_1 + m_2 + m_3$
- single beta decay -> $m_{\beta}^2 = g(m_k, \theta_{ij})$

We obtain information on neutrinos from various sources:

- oscillation experiments -> Δm^{2} 's, θ_{ij}

-
$$0\nu\beta\beta$$
 -> $m_{ee} = f(m_k, \theta_{ij}, \Phi_l)$

- cosmology -> $\Sigma = m_1 + m_2 + m_3$
- single beta decay -> $m_{\beta}^2 = g(m_k, \theta_{ij})$

... in order to make sense of all that information (i.e., obtain information on m_k and θ_{ij}), obviously the best way is a global analysis

2. Aspects to know about

2. Aspects to know about Leptonic mixing

[King, Luhn: Rep. Prog. Phys. 76 (2013) 056201]

In a nutshell:

- neutrino mass basis ≠ flavour basis
- thus: a v_e does NOT have an "electron neutrino mass", but it is a superposition

2. Aspects to know about

Leptonic mixing

- our main source of information: oscillation experiments
 - solar neutrinos
 - · atmospheric neutrinos
 - reactor neutrinos
 - accelerator neutrinos
 - geoneutrinos
- some additional information: neutrino astrophysics
 - supernova neutrinos
 - · high-energy cosmic neutrinos
 - diffuse backgrounds

- <u>IF</u> neutrinos are Majorana fermions (i.e., identical to their antiparticles)... neutrinoless double beta decay <u>can</u> occur (but does not have to!):

$$(Z,A) \rightarrow (Z+2,A) + e^{-} + e^{-}$$

- this process violates lepton number by two units
- IF mediated by light neutrinos:
 - A ~ $m_{ee} = m_1 c_{12}^2 c_{13}^2 + m_2 s_{12}^2 c_{13}^2 e^{i\alpha} + m_3 s_{13}^2 e^{i\beta}$

- thus, neutrinoless double beta decay may give information on the neutrino mass:

- thus, neutrinoless double beta decay may give information on the neutrino mass:

2. Aspects to know about Cosmology

2. Aspects to know about Cosmology

- neutrinos do in fact act as Dark Matter
 (HOT Dark Matter, if thermalised i.e.,
 with relativistic velocities)
 - -> IF thermalised, everything depends on the amount of the neutrinos (i.e., their "abundance" \$2,)
 - -> for late times: $\Omega_v \sim \Sigma = m_1 + m_2 + m_3$

2. Aspects to know about Cosmology

- relativistic neutrinos impact cosmology:

- Large free streaming
 -> suppression of small structures
- modification of CMB anisotropies
 - redshift of matter-radiation equality
 -> position & amplitude of peaks
 - modified matter density (late times)
 -> overall position of spectrum \$\$
 slope for low l)

2. Aspects to know about Bayesian statistics

2. Aspects to know about Bayesian statistics In modern statistics, there are two main directions:

frequentist statistics

probability = $\lim_{N \to \infty} \frac{\# \text{ successful trials}}{\# \text{ total trials}}$

-> looks objective

Bayesian statistics

probability = degree of belief -> looks subjective 2. Aspects to know about Bayesian statistics While subjectivity may appear strange, probability is NOT objective:

• urn with R red balls and W white balls

$$P(\text{red on 1st trial}) = \frac{R}{R+W}$$

P(red on 2nd trial after first draw's colour is unknown) =P(2=R|1=R)×P(1=R) + P(2=R|1=W)×P(1=W) = $\frac{R-1}{R+W-1} \times \frac{R}{R+W} + \frac{R}{R+W-1} \times \frac{W}{R+W} = \frac{R}{R+W}$ 2. Aspects to know about Bayesian statistics While subjectivity may appear strange, probability is NOT objective:

• urn with R red balls and W white balls

$$P(red on 1st trial) = \frac{R}{R+W}$$
Same result,
although the
system has
colour is unknown)
=P(2=R|1=R)×P(1=R) + P(2=R|1=W)×P(1=W)
= $\frac{R-1}{R+W-1} \times \frac{R}{R+W} + \frac{R}{R+W-1} \times \frac{W}{R+W} = \frac{R}{R+W}$

2. Aspects to know about Bayesian statistics Implications of Bayes' theorem:

- if we know the likelihood, we can construct a posterior probability density for any given prior probability
- for "good" (i.e., constraining) data, the posterior is nearly independent of the choice of prior (except for pathologic cases); for "bad" data, it is not....
- in practice, the evaluation of the evidence can be very tricky
 -> Bayesian Analysis Toolkit (BAT)

3. Our final results We have performed a Bayesian analysis of neutrino mass data!!

We have performed a Bayesian analysis of neutrino mass data!! INPUTS:

- oscillation data -> nu-fit.org: v3.0
- ονββ -> GERDA, KamLAND-Zen, EXO
- cosmology -> Planck + lensing (+BAO)
 NME computations (nuclear part of Ονββ)

We have performed a Bayesian analysis of neutrino mass data!! **INPUTS**:

- oscillation data -> nu-fit.org: v3.0
- ονββ -> GERDA, KamLAND-Zen, EXO
- cosmology -> Planck + lensing (+BAO)
 NME computations (nuclear part of Ονββ)

ASSUMPTIONS:

- ονββ transmitted by Light neutrinos
 -> mostly the dominant contribution
- cosmology only depends on Σ
 -> minimal, but may still be wrong

Posteriors: Round 1 - NMEs

Known fact: NMEs are hardly constrained by the data -> one basically gets back the prior:

Bayes factor: posterior "odds"

Would you bet on normal ordering?!?

- prior: oscillation data slightly favour NO
- posterior odds (after our analysis):

Cosmology	Prior on m_{lightest}	Bayes factor NO/IO
restrictive	flat	2.3
conservative	flat	1.6
restrictive	\log	1.9
conservative	\log	1.7

-> preference only mildly enhanced (to be expected: ordering not yet measured)

4. Conclusions

- Neutrinos... will hopefully teach us a lot about new physics in the coming years!
- Neutrino mass data... will be available in the future, and we need to know how to handle it!
- A global analysis... is the tool of choice!
- Bayesian inference... is the best approach to combine the different data sets from rather distinct sectors!
- Interdisciplinary projects and crosscollaborations... are always the greatest fun!!

