Teilchenphysik mit kosmischen und mit erdgebundenen Beschleunigern

6. Neutrinos I - Atmospheric, Accelerator and Cosmic Neutrinos

12.06.2017

Prof. Dr. Siegfried Bethke Dr. Frank Simon

Neutrinos: Time Line I

- 1931 W. Pauli postulates the existence of the neutrino in β decay
- 1934 E. Fermi presents a theory of the π decay (incl. neutrino)
- 1959 Discovery of v_e (Reines and Cowan; Nobel prize 1995)
- 1962 Discovery of ν_μ
- 1968 First measurement of solar neutrinos (v_e): less than 50% of the expected intensity ("Solar Neutrino Problem")
- 1987 Kamiokande and IMB (nucleon decay experiments) detect neutrinos from SN 1987a
- 1988 Kamiokande sees only 60% of the expected atmospheric ν_μ flux
 - 2002 Nobel prize for Koshiba and Davis for solar neutrino and Kamiokande measurements
- 1990 LEP experiments prove the existence of exactly 3 generations of light neutrinos
- 1998 Super-Kamiokande shows evidence for neutrino oscillations (ν_μ), -> neutrinos have finite mass

Neutrinos: Time Line II

- 2000 explicit confirmation and observation of v_{τ}
- 2001 Confirmation of solar v_e deficit and definite proof of neutrino oscillations into other flavors by SNO
 - 2015 Nobel prize for Kajita and MacDonald for SuperK / SNO discoveries
- 2011 First evidence for non-zero Θ₁₃ by T2K & MINOS
- 2012 Observation of cosmic PeV neutrinos by IceCube
- 2016 First indication for possible CP violation in the neutrino sector by T2K

Neutrinos: General Properties

- 3 known families of elementary particles:
 - 3 neutrinos as partners of the charged leptons
 - In the "simple" Standard Model neutrinos are massless
 - Experimental bounds of neutrino masses:

$$M(v_e) < 2 eV$$

$$M(v_{\mu}) < 0.19 \text{ MeV}$$

$$M(v_{\tau}) < 18.2 \text{ MeV}$$

Neutrino Sources

Solar neutrinos

(get produced in the fusion reaction in the sun), ca 2 x 10^{38} /s, flux on earth ~ 7 x 10^{10} cm⁻²s⁻¹

Cosmic neutrino background

freeze out ~ 1s after the Big Bang, temperature ~ 1.9 K, $\langle E \rangle$ ~ 5 x 10⁻⁴ eV, ~ 330/cm³

Cosmic neutrino sources

supernova explosions, active galaxies, GRBs...

Atmospheric neutrinos

produced in cosmic ray air showers

Geo neutrinos

radioactive decay in earth, total power ~ 20 TW, flux ~ 10⁷ cm⁻²s⁻¹

Man made neutrinos

reactor neutrinos (MeV energies), accelerator neutrinos (MeV -> GeV)

Neutrinos: General Properties

- Neutrinos are special: they only interact via the weak interaction
 - Maximum parity violation of the weak interaction enforces: Neutrinos are always left-handed (helicity -1)
 Anti-Neutrinos are always right-handed (helicity +1)

Neutrinos: General Properties

- Neutrinos are special: they only interact via the weak interaction
 - Maximum parity violation of the weak interaction enforces: Neutrinos are always left-handed (helicity -1)
 Anti-Neutrinos are always right-handed (helicity +1)

- Possible consequence:
 - Neutrinos may be their own anti-particles, so-called Majorana particles
 - A neutrino would then be a left-handed Majorana neutrino, an anti-neutrino a right-handed Majorana neutrino
 - ▶ The differentiation between Majorana and Dirac neutrinos is only possible for massive neutrinos

Neutrinos: Interaction with Matter

Neutral current

Charged current

SNO

Neutrino - Elektron Scattering

Special Case:

- For v_{μ} and v_{τ} this process only works via the neutral current
- For v_e both neutral and charged current contributes

Cross sections

- $v_{\mu}e$: ~ 1.5 x 10⁻⁴² cm² E_v/GeV
- v_ee: ~ 10 x 10⁻⁴² cm² E_v/GeV

SNO

Neutrino - Elektron Scattering

Special Case:

- For v_{μ} and v_{τ} this process only works via the neutral current
- For v_e both neutral and charged current contributes

- $v_{\mu}e$: ~ 1.5 x 10⁻⁴² cm² E_v/GeV
- v_ee: ~ 10 x 10⁻⁴² cm² E_v/GeV

SNO

In general: neutrino cross sections are proportional to the neutrino energy!

Neutrino Oscillations: Basic Conditions

- Neutrinos have to have mass to be able to oscillate!
 - Mass eigenstates are not the same as flavor eigenstates

Neutrino Oscillations: Basic Conditions

- Neutrinos have to have mass to be able to oscillate!
 - Mass eigenstates are not the same as flavor eigenstates
- Example: A world with two neutrino types:
 - The eigenstates of the weak interaction v_μ und v_e are not identical to the mass eigenstates v_1 und v_2

$$\begin{pmatrix} \nu_e \\ \nu_\mu \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \end{pmatrix}$$

Neutrino Oscillations: Basic Conditions

- Neutrinos have to have mass to be able to oscillate!
 - Mass eigenstates are not the same as flavor eigenstates
- Example: A world with two neutrino types:
 - The eigenstates of the weak interaction v_μ und v_e are not identical to the mass eigenstates v_1 und v_2

$$\begin{pmatrix} \nu_e \\ \nu_\mu \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \end{pmatrix}$$

• The eigenstates of the weak interaction v_{μ} und v_{e} (which we can observe and identify) are mixes of the mass eigenstates:

$$|\nu_{\mu}\rangle = -\sin\theta |\nu_{1}\rangle + \cos\theta |\nu_{2}\rangle$$

 $|\nu_{e}\rangle = \cos\theta |\nu_{1}\rangle + \sin\theta |\nu_{2}\rangle$

Neutrino Oscillations: Two Neutrinos

• The time evolution in vacuum is given by the mass eigenstates (Schrödinger Eq):

$$|\nu_{\mu}(t)\rangle = -\sin\theta (|\nu_{1}\rangle e^{-iE_{1}t}) + \cos\theta (|\nu_{2}\rangle e^{-iE_{2}t})$$

$$E_{i} = \sqrt{p^{2} + m_{i}^{2}} \approx p + \frac{m_{i}^{2}}{2p} \approx E + \frac{m_{i}^{2}}{2E}$$

Neutrino Oscillations: Two Neutrinos

• The time evolution in vacuum is given by the mass eigenstates (Schrödinger Eq):

$$|\nu_{\mu}(t)\rangle = -\sin\theta (|\nu_{1}\rangle e^{-iE_{1}t}) + \cos\theta (|\nu_{2}\rangle e^{-iE_{2}t})$$

$$E_{i} = \sqrt{p^{2} + m_{i}^{2}} \approx p + \frac{m_{i}^{2}}{2p} \approx E + \frac{m_{i}^{2}}{2E}$$

- If the two mass eigenstates have different masses the relative composition changes over time, a v_{μ} can transform into a $v_{e}!$
- ▶ The oscillation property is:

$$P(\nu_{\mu} \rightarrow \nu_{e}) = |\langle \nu_{e} | \nu_{\mu}(t) \rangle|^{2}$$

Neutrino Oscillations: Two Neutrinos

• The time evolution in vacuum is given by the mass eigenstates (Schrödinger Eq):

$$|\nu_{\mu}(t)\rangle = -\sin\theta (|\nu_{1}\rangle e^{-iE_{1}t}) + \cos\theta (|\nu_{2}\rangle e^{-iE_{2}t})$$

$$E_{i} = \sqrt{p^{2} + m_{i}^{2}} \approx p + \frac{m_{i}^{2}}{2p} \approx E + \frac{m_{i}^{2}}{2E}$$

- If the two mass eigenstates have different masses the relative composition changes over time, a v_{μ} can transform into a $v_{e}!$
- ▶ The oscillation property is:

$$P(\nu_{\mu} \rightarrow \nu_{e}) = |\langle \nu_{e} | \nu_{\mu}(t) \rangle|^{2}$$

▶ The transition probability as a function of distance and neutrino energy is:

$$P(\nu_{\mu} \leftrightarrow \nu_{e}) = \sin^{2}2\theta \sin^{2}\left(\frac{\Delta m^{2}L}{4E}\right) = \sin^{2}2\theta \sin^{2}\left(1.27 \frac{\Delta m^{2}}{\text{eV}^{2}} \frac{L/\text{m}}{E/MeV}\right)$$
$$\Delta m^{2} = m_{1}^{2} - m_{2}^{2}$$

Neutrino Oscillations

Neutrino oscillations as a function of distance

$$\Delta m^2 = 0.005 \,\mathrm{eV}^2 \;,\; \sin^2\!2\theta = 1 \;,\; E = 1 \,\mathrm{GeV}$$

Neutrino Oscillations

• The influence of the mixing angle:

▶ The mixing angle determines the amplitude (the maximum level of transformation), the mass difference determines the speed of the oscillation

Neutrino Oscillations: General Case

$$|\nu_{\alpha}\rangle$$
 mit $\alpha = e, \mu, \tau, \dots$

n mass eigenstats

$$|\nu_i\rangle \text{ mit } i = 1, 2, 3, ...$$

• The states are coupled via a unitary n x n mixing matrix:

$$|\nu_{\alpha}\rangle = \sum_{i} U_{\alpha i} |\nu_{i}\rangle$$

- (n-1)² independent parameters of the mixing matrix:
 - n(n-1)/2 mixing angles
 - (n-1)(n-2)/2 CP violating phases
- Für n = 3:
 - 3 mixing angles: $\theta_{12}, \, \theta_{23}, \, \theta_{13}$
 - 1 phase

General description of the 3-v case

- Described by a 3 x 3 matrix (Pontecorvo-Maki-Nakagawa-Sakata-Matrix PMNS):
 - 3 angels and one CP violating phase
- analogous to the CKM matrix in the quark case

$$U_{MNS} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix}$$
 CP violation connected to Θ 13
$$= \begin{pmatrix} 1 & & & \\ & c_{23} & s_{23} \\ & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & & & \\ & & 1 & \\ & -s_{13}e^{i\delta} & & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} \\ & -s_{12} & c_{12} \\ & & 1 \end{pmatrix}$$

Detectors for Highly Energetic Neutrinos

- Small cross section of neutrinos: Large detector masses!
- Rare neutrino events: Good shielding from background processes:
 - Suppression of natural radioactivity: high purity
 - Shielding from cosmic muons
- Example: Kamiokande, Super-Kamiokande (Kamioka Nucleon Decay Experiment)
 - Search for proton decay with 3000 t of highly pure water (since 1983)
 - cosmic, atmospheric and solar neutrinos (since 1985)
 - 1987: 11 neutrinos from SN1987A observed
 - Upgrade to Super-K completed in 1996
 - 50 000 t highly pure water, 32 000 t active, 18 000 t as veto
 - 11 200 PMTs (50 cm diameter)

Super-Kamiokande Measurement Principle

Neutrinos produce their corresponding leptons via charged current interaction

- High energy threshold for τ production due to high mass (1.777 GeV), thus only detection of electrons and muons
- Production of Cherenkov light of charged leptons in water (index of refraction 1.33)
 - Detection of Cherenkov light:
 - Light distribution enables particle identification (µ or e)
 - Amount of light enables measurement of track length, with that also energy and direction determination of the original neutrino

Atmospheric Neutrinos

 Atmospheric neutrinos are produced in air showers via pion / kaon decay and via muon decay:

$$\pi^-, K^- \to \mu^- + \bar{\nu}_{\mu}$$

$$\mu^- \to e^- + \nu_{\mu} + \bar{\nu}_{e}$$

Muon life time:

- $c\tau_{\mu} \approx 660 \,\mathrm{m}$
- The measurement (no charge identification possible):

$$\frac{\mu}{e} = \frac{\nu_{\mu} + \bar{\nu}_{\mu}}{\nu_{e} + \bar{\nu}_{e}}$$

If all muons decay (for low energies):

$$\frac{\mu}{e} \approx 2$$

• For high energies: $\frac{e}{e} \sim \frac{2}{\mu} > 2$

Oscillation of Atmospheric Neutrinos

- Deficit of muon neutrinos observed, electron neutrinos match expectations
- Dependence of discrepancy with zenith angle

Oscillation of Atmospheric Neutrinos

 Interpretation: On the way through earth muon neutrinos transform into tau neutrinos

Oscillation of Atmospheric Neutrinos: Result

 Best value for oscillation parameters

$$\Delta m^2 = 2.4 \times 10^{-3} \text{eV}^2$$
$$\sin^2 2\theta = 1.0$$

- Maximum mixing
- oscillation length
 - ~ 1000 km E_v/GeV

Neutrino Oscillations - Status

- Two distinct types of oscillations (with quite different mass splittings) have been observed:
 - Atmospheric disappearance of v_{μ} , $\Delta m^2 \sim 2.4 \times 10^{-3} \text{ eV}^2$
 - Solar (next week in detail) disappearance of v_e , $\Delta m^2 \sim 7.6 \times 10^{-5} \text{ eV}^2$
- ▶ Choice of convention: small splitting between v₁ and v₂, big between v₁/v₂ and v₃
- ▶ The data tell us: mixing between v₁ and v₃ is small
 - In solar oscillations, we observe v₁ → v₂ oscillations, v₁ has to have a big ve component
 - ▶ In atmospheric oscillations, we observe $v_2 \rightarrow v_3$, with maximal mixing: v_3 is (almost) a 50-50 mixture of v_{τ} and v_{μ}

Neutrino Oscillations - Status

- Two distinct types of oscillations (with quite different mass splittings) have been observed:
 - Atmospheric disappearance of v_{μ} , $\Delta m^2 \sim 2.4 \times 10^{-3} \text{ eV}^2$
 - Solar (next week in detail) disappearance of v_e , $\Delta m^2 \sim 7.6 \times 10^{-5} \text{ eV}^2$
- ▶ Choice of convention: small splitting between v₁ and v₂, big between v₁/v₂ and v₃
- ▶ The data tell us: mixing between v₁ and v₃ is small
 - In solar oscillations, we observe v₁ → v₂ oscillations, v₁ has to have a big ve component
 - ▶ In atmospheric oscillations, we observe $v_2 \rightarrow v_3$, with maximal mixing: v_3 is (almost) a 50-50 mixture of v_{τ} and v_{μ}

solar/

Neutrino-Oscillations: The Resulting Picture

• Absolute masses and hierarchy not known yet! Two possible arrangements...

Neutrinos at Accelerators

- Neutrino production:
 - Analogous to air showers: hadronic showers on impact of highly energetic protons on production target
 - Production of pions, kaons that decay in a decay tunnel:

$$\pi^-, K^- \rightarrow \mu^- + \bar{\nu}_{\mu}$$

- Tunnel not long enough for substantial decay of muons: Essentially pure ν_μ beam
- There have been many different experiments with accelerator neutrinos
 - Study of the weak interaction
 - Measurement of the quark composition of nuclei
 - Discovery of the v_{τ}
 - Confirmation of atmospheric measurements
 - Evidence for non-zero θ₁₃
 - First hints for CP violation

Making A Neutrino Beam

 Pions focused by specialized magnet systems:

"Neutrino Horns"

Long Baseline Experiments

- Neutrino beam produced with accelerator
- Reference measurement with a "Near Detector"
- Detection of neutrinos in a "Far Detector"
- Choice of distance and energy depends the region of the mixing matrix that can be probed

The composition of the beam changes from source to detector From a pure v_{μ} beam to a mixture of v_{μ} , v_{τ} and a few v_{e} ($\theta_{13} \neq 0$)

T2K: Neutrino Beam to SuperK

• Goal: precise measurement of atmosph. oscillation, θ₁₃, possible CP violation

• Runs since 2010 (with 1 year down time due to Tohoku Earthquake)

Super-KAMIOKANDE

Near Detector

Pure v_µ beam

J-PARC

295 km

TOKAI

T2K: Neutrino Beam to SuperK

Goal: precise measurement of atmosph. oscillation, θ₁₃, possible CP violation

Runs since 2010 (with 1 year down time due to Tohoku Earthquake)

Far Detector

T2K - The Choice of the Right Baseline

Almost complete disappearance of ν_μ:

Also optimal for a measurement of θ_{13} !

Atmospheric & Accelerators: The Global Picture

Super-K atmospheric compared to accelerator long baseline:
 all fits together, accelerators give the most precise results by now

CNGS / OPERA - Confirmation

 One of the goals: Direct observation of oscillations of v_μ to v_τ in a v_μ Long Baseline Beam (CERN → Gran Sasso)

- Magnetic spectrometer for track and energy reconstruction, in between blocks of photo emulsion for precise reconstruction of tracks at the interaction vertex
 - If an interesting event is observed in the spectrometer, the corresponding block is extracted and examined

CNGS / OPERA - Confirmation

 One of the goals: Direct observation of oscillations of v_μ to v_τ in a v_μ Long Baseline Beam (CERN → Gran Sasso)

- Magnetic spectrometer for track and energy reconstruction, in between blocks of photo emulsion for precise reconstruction of tracks at the interaction vertex
 - If an interesting event is observed in the spectrometer, the corresponding block is extracted and examined

OPERA: First ν_τ Candidate

 v_{τ} produces $\tau,$ fast decay into μ and vs

 \Rightarrow Proof, that the atmospheric oscillation is $v_{\mu} \rightarrow v_{\tau}$

OPERA Press Release, 31.05.2010

OPERA: First ν_τ Candidate

In total 4
additional v_t
have been
observed "5 -sigma
discovery":
matches
expectations

 v_{τ} produces τ , fast decay into μ and vs

 \Rightarrow Proof, that the atmospheric oscillation is $v_{\mu} \rightarrow v_{\tau}$

OPERA Press Release, 31.05.2010

Measuring θ₁₃ at Accelerators

- θ_{13} describes $v_1 \rightarrow v_3$ oscillations: Squared mass differences (almost) as in the atmospheric case, but transitions involving v_e (large v_e component in v_1 !)
 - With a v_{μ} beam, θ_{13} is accessible through the subdominant oscillation from v_{μ} to v_{e} (the dominant oscillation is v_{μ} to v_{τ})

Oscillation probability: $P(\nu_{\mu} \leftrightarrow \nu_{e}) \approx sin^{2}2\theta_{13} sin^{2}\theta_{23} sin^{2} \left(\frac{\Delta m_{13}^{2}L}{4E}\right)$

Strongly suppressed compared to $v_{\mu} \rightarrow v_{\tau}$ oscillations: Looking for small effects!

length scale depends on v energy
here: shown for the NOvA
experiment at FNAL
Important: Energy matched to baseline
Narrow energy distribution

T2K - Oscillation Results

Observation of v_µ → v_e oscillations :

11 events (3.2 σ that θ_{13} is not 0)

Best results currently from reactors - more next week

Searching for CP Violation in the v - Sector

CP Violation: A difference between matter and antimatter

Searching for CP Violation in the v - Sector

- CP Violation: A difference between matter and antimatter
- In the SM: Generated by the complex phase in the mixing matrix (Quarks, vs),
 if δ ≠ 0
 - Shows up in differences in oscillation behavior between neutrinos and antineutrinos!

Searching for CP Violation in the v - Sector

- CP Violation: A difference between matter and antimatter
- In the SM: Generated by the complex phase in the mixing matrix (Quarks, vs), if δ ≠ 0
 - Shows up in differences in oscillation behavior between neutrinos and antineutrinos!

$$P(
u_{\mu} o
u_{e}) \simeq \left[\sin^{2} 2\theta_{13} imes \sin^{2} \theta_{23} imes rac{\sin^{2}[(1-x)\Delta]}{(1-x)^{2}} \right]$$
 Phys. Rev. D64 (2001) 053003

CP violating
$$\bigcirc \alpha \underbrace{\sin \delta_{CP}} \times \sin^2 2\theta_{12} \sin 2\theta_{13} \sin 2\theta_{23} \times \sin \Delta \frac{\sin[x\Delta]}{x} \frac{\sin[(1-x)\Delta]}{(1-x)}$$
 "+" for antineutrino

CP conserving
$$\alpha \cos \delta_{CP} \times \sin 2\theta_{12} \sin 2\theta_{13} \sin 2\theta_{23} \times \cos \Delta \frac{\sin[x\Delta]}{x} \frac{\sin[(1-x)\Delta]}{(1-x)} + O(\alpha^2)$$

$$x = \frac{2\sqrt{(2)}G_FN_eE}{\Delta m_{31}^2} \quad \alpha = |\frac{\Delta m_{21}^2}{\Delta m_{31}^2}| \sim \frac{1}{30} \quad \Delta = \frac{\Delta m_{31}^2L}{4E}$$

First Results from T2K

Running both with neutrinos and anti-neutrinos:
 Observed less anti-ve than expected in any scenario: hints at maximal CP violation

TABLE I. Number of ν_e and $\overline{\nu}_e$ events expected for various values of δ_{CP} and both mass orderings compared to the observed numbers.

Normal	$\delta_{CP} = -\pi/2$	$\delta_{CP} = 0$	$\delta_{CP} = \pi/2$	$\delta_{CP} = \pi$	Observed
$ u_e $	28.7	24.2	19.6	24.1	32
$\overline{ u}_e$	6.0	6.9	7.7	6.8	4
Inverted	$\delta_{CP} = -\pi/2$	$\delta_{CP} = 0$	$\delta_{CP} = \pi/2$	$\delta_{CP} = \pi$	Observed
$ u_e $	25.4	21.3	17.1	21.3	32
$\overline{ u}_e$	6.5	7.4	8.4	7.4	4

First Results from T2K

 Running both with neutrinos and anti-neutrinos:
 Observed less anti-v_e than expected in any scenario: hints at maximal CP violation

Future Measurements of CP Violation

 The "next big thing" in neutrino physics - with future experiments to make definitive measurements

- DUNE at Fermilab to start taking data in 2026
 - x4 higher mean energy than T2K: longer baseline (good to constrain hierarchy)
- Also in discussion T2HK: Much larger water-Cherenkov detector in the beam from Tokai, same baseline as T2K

Future Measurements of CP Violation

 The "next big thing" in neutrino physics - with future experiments to make definitive measurements

- DUNE at Fermilab to start taking data in
 - x4 higher mean energy than T2K: longe
- Also in discussion T2HK: Much larger wat from Tokai, same baseline as T2K

Cosmic Neutrinos

- Few events:
 - Huge detectors required
 - Very good shielding: The full earth
 - does not work for the highest energies: neutrino cross section rises with energy, above ~100 TeV neutrinos are absorbed by earth

Supernova Neutrinos

Neutrinos from the core collapse of a star - Production of all neutrino flavors
 Formation of a neutron star:

$$A + e^- \rightarrow A' + \nu_e$$

Thermal production of electron - positron pairs in the accretion disc, followed by neutrino production (all flavors)

$$\gamma + \gamma \rightarrow e^+ + e^ e^+ + e^- \rightarrow \nu + \bar{\nu}$$

Neutrinos are initially the first particles that can leave the explosion zone, all others are absorbed in the extremely dense, collapsing material: The neutrino signal reaches Earth before the optical signal!

▶ A large fraction of the gravitational energy of the star is emitted in the form of neutrinos, the typical energies are in the few 10 MeV range

Supernova SN1987a

Supernova explosion 1987 in the Large Magelanic Cloud

Kamiokande Signal

A confirmed extraterrestrial signal

A neutrino burst with a duration of ~10 s, seen at the same time also in the IMB experiment

Only $\overline{\nu_e}$: highest detection probability, lowest energy threshold

PRL 58, 1490 (1987)

Cosmic Neutrinos: Expectations

cosmogenic neutrinos:
Produced in decays of
pions from GZK events:
Could give hints on
sources and production
mechanisms of highestenergy cosmic rays

in principle a "guaranteed discovery" with enough sensitivity

Detectors for Neutrino Astronomy

- Different detection techniques, depend on energy and sensitivity
- Energies in the TeV PeV range:
 - Cherenkov detectors: large signal, relatively low energy threshold, requires a high sensor density due to light absorption
 - Amanda/IceCube: Antarctic ice as Cherenkov medium
 - Antares/Baikal/KM3NeT: Tiefes Meer/See Wasser als Cherenkov-Medium
- Energies above 10¹⁷ 10¹⁹ eV:
 - Optical detection of neutrino-induced air showers: Auger, EUSO, ...
 - Acoustic detection of neutrino-induced showers in water, ice, salt:
 - Sound waves through heating of the material
 - Cherenkov radio waves from electromagnetic showers induced by ve
 - high range, sufficient signal for extreme energies
 - First tests with RICE in Antarctic ice, now preparing ARIANNA for higher sensitivity

Antares

• 2.5 km deep off the southern coast of France (Toulon, between Marseille and Saint Tropez)

Amanda/IceCube

Amanda/IceCube: Neutrinos at the South Pole

Amanda/IceCube: Neutrinos at the South Pole

- Detectors for Cherenkov light:
 DOM (Digital-Optical Module)
- Total: 80 strings with 60 DOMs each

IceCube Event

 Arrival time of light at individual detectors allows the determination of the muon direction and with that the direction of the neutrino

Highest Energies - First Observation 2012

IceCube has observed two events:

(visible energy in the detector, neutrino energy higher)

- Both events are "down-going" (as expected)
- Requires specialized event selection to exclude atmospheric neutrinos

Highest Energies - First Observation 2012

IceCube has observed two events:

(visible energy in the detector, neutrino energy higher)

- Both events are "down-going" (as expected)
- Requires specialized event selection to exclude atmospheric neutrinos

Now even an event at 2 PeV, in total 37 events > 30 TeV

Neutrinos at Highest Energies

- Atmospheric neutrinos excluded at 5.7 σ
- Data consistent with a cosmic neutrino flux of E⁻²

Up to now no individual sources identified, no correlation with known objects - but anisotropic distribution

Neutrinos at Highest Energies

Cosmic Neutrino Sources

• Standard scenario: pion decay (v_{μ}) , then muon decay $(v_{\mu} + v_{e})$: Source composition (1:2:1) - evolves due to neutrino oscillations

Cosmic Neutrino Sources

• Standard scenario: pion decay (v_{μ}) , then muon decay $(v_{\mu} + v_e)$: Source composition (1:2:1) - evolves due to neutrino oscillations

Summary

- Neutrinos are the lightest particles in the Standard Models
- Neutrinos have mass: they oscillate There are (at least) three different mass eigenstates, that are not identical with the flavor eigenstates
- Neutrino oscillations have been observed with atmospheric and solar Neutrinos
- Accelerator experiments have confirmed the atmospheric measurements, reactor experiments have confirmed the solar measurements
- Accelerator measurements of the angle θ_{13} agree with reactor results θ_{13} is surprisingly large: Offers the possibility to search for CP violation with new experiments
- First extraterrestrial signal: SN1987A
- Up to now no sources identified for highly energetic cosmic neutrinos, but first intriguing events have been observed
- ▶ Currently a very active field, improvements and new results expected!

Summary

- Neutrinos are the lightest particles in the Standard Models
- Neutrinos have mass: they oscillate There are (at least) three different mass eigenstates, that are not identical with the flavor eigenstates
- Neutrino oscillations have been observed with atmospheric and solar Neutrinos
- Accelerator experiments have confirmed the atmospheric measurements, reactor experiments have confirmed the solar measurements
- Accelerator measurements of the angle θ_{13} agree with reactor results θ_{13} is surprisingly large: Offers the possibility to search for CP violation with new experiments
- First extraterrestrial signal: SN1987A
- Up to now no sources identified for highly energetic cosmic neutrinos, but first intriguing events have been observed
- ▶ Currently a very active field, improvements and new results expected!

Next Lecture: 19.06., "Neutrinos II", S. Bethke

Lecture Overview

24.04.	Introduction & Accelerators	
01.05.	Holiday - No Lecture	
08.05	Cosmic Accelerators	
15.05.	Detectors	
22.05.	The Standard Model	
29.05.	QCD and Jets	
05.06.	Holiday - No Lecture	
12.06.	Neutrinos I	
19.06.	Neutrinos II	
26.06	No Lecture	
03.07.	Cosmic Rays I	
10.07.	Cosmic Rays II	
17.07.	Precision Experiments	
24.07.	Dark Matter, Dark Energy & Gravitational Waves	

Now History: Neutrino Speed

 Measurement of the neutrino flight time - Synchronisation of clocks at CERN and Opera via GPS

First Attempt - Spectacular Result

 September 2011: Opera observes, that the neutrinos are 60 ns too fast (with an uncertainties of 10 ns).

Technique: "edges" of the neutrino distribution in Opera, relative to the proton pulse -at CERN - statistical method, possible uncertainties from beam focusing (time structure of the neutrino pulse)

The Confirmation

 New measurements with pulsed beam, beam pulses 3 ns FWHM - direct measurement of flight time!

Confirms original results: beam structure as cause excluded

Uncertainty now only 4 ns (for a "signal" of 60 ns)

... but N.B.: There are corrections of 40 µs for signal running times in the electronics!

The Resolution

 As most had expected - It was a measurement error: An optical fiber of the timing system was not correctly plugged in - Resulted in a slower signal rise on the corresponding photo diode, the clock is a bit later due to later passing of threshold, voila...

The Resolution

 As most had expected - It was a measurement error: An optical fiber of the timing system was not correctly plugged in - Resulted in a slower signal rise on the corresponding photo diode, the clock is a bit later due to later passing of threshold,

voila...

Now: The time of flight is bang on, within a few ns!

