Teilchenphysik mit kosmischen und mit erdgebundenen Beschleunigern

08. Cosmic Rays I
03.07.2017

Prof. Dr. Siegfried Bethke

Reminder:Cosmic Rays - Spectrum

- Extends over many orders of magnitude in energy and flux:
- $\mathrm{GeV}\left(10^{9} \mathrm{eV}\right)-\mathrm{ZeV}\left(10^{21}\right)$
- $>1 \mathrm{~cm}^{-2} \mathrm{~s}^{-1}-<1 \mathrm{~km}^{-2}$ per century
- Follows a power law:

$$
\frac{d N}{d E} \propto E^{-\gamma}
$$

- $\gamma \sim 2.7$
$\mathrm{E}<10^{15} \mathrm{eV}$
- $\gamma \sim 3.0 \quad 10^{15} \mathrm{eV}<E<10^{18} \mathrm{eV}$
- $\gamma \sim 2.710^{18} \mathrm{eV}<E$

Cosmic Rays: Spectrum \& Experiments

Air Showers: The Atmosphere as Calorimeter

- Nuclear interaction length $\lambda_{1} \sim 90 \mathrm{~g} / \mathrm{cm}^{2}$
- Radiation length $X_{0} \sim 36.6 \mathrm{~g} / \mathrm{cm}^{2}$
- Density of the atmosphere: ~ $1035 \mathrm{~g} / \mathrm{cm}^{2}$
- ~ $11 \lambda_{1}, 28 X_{0}$

$$
\begin{array}{ll}
\text { Reminder: } \\
\text { Radiation length: Energy loss of electrons in matter: } & \left\langle E_{e}(x)\right\rangle \propto e^{\frac{x}{X_{0}}} \\
\text { Nuklear interaction length: Typical mean free path } & \\
\text { between nuclear reactions, Probability that no } & P(x)=e^{\frac{-x}{\lambda_{I}}}
\end{array}
$$

Extended Air Showers (EAS)

EAS: In the Atmosphere

EAS: Hadronic Component

- Inelastic reactions of the incoming hadron (proton, nucleus) with nuclei in the atmosphere after $\sim 1 \lambda_{1}$, typically energy loss of $40 \%-60 \%$, production of secondary hadrons: $\mathrm{p}, \mathrm{n}, \pi^{0}, \pi^{ \pm}, \mathrm{K}^{ \pm}, \ldots$

EAS: Hadronic Component

- Inelastic reactions of the incoming hadron (proton, nucleus) with nuclei in the atmosphere after $\sim 1 \lambda_{1}$, typically energy loss of $40 \%-60 \%$, production of secondary hadrons: $\mathrm{p}, \mathrm{n}, \pi^{0}, \pi^{ \pm}, \mathrm{K}^{ \pm}, \ldots$
- Neutral pions: $\quad \pi^{0} \rightarrow \gamma \gamma, \tau \sim 10^{-16} s$
- electromagnetic shower

EAS: Hadronic Component

- Inelastic reactions of the incoming hadron (proton, nucleus) with nuclei in the atmosphere after $\sim 1 \lambda_{1}$, typically energy loss of $40 \%-60 \%$, production of secondary hadrons: $\mathrm{p}, \mathrm{n}, \pi^{0}, \pi^{ \pm}, \mathrm{K}^{ \pm}, \ldots$
- Neutral pions: $\quad \pi^{0} \rightarrow \gamma \gamma, \tau \sim 10^{-16} s$
- electromagnetic shower
- Charged pions: $\quad \pi^{ \pm} \rightarrow \mu^{ \pm} \nu_{\mu}, \tau \sim 2.6 \times 10^{-8} s(c \tau \sim 8 m)$
- Hadronic interaction before decay, or decay into muon + neutrino (at energies of $\sim 10-20 \mathrm{GeV}$ the range is $\sim 1 \lambda_{1}$)
- Muonic component is integrating: Muon decay irrelevant on shower time scale, lifetime $\sim 2 \times 10^{-6} \mathrm{~s}$
- The production of additional hadrons dominates early in the shower, towards the end decay into muons is more probable

EAS: Electromagnetic Component

- Pair production of photons from pion decay (or primary photon):

$$
\gamma \rightarrow e^{+}+e^{-}
$$

EAS: Electromagnetic Component

- Pair production of photons from pion decay (or primary photon):

$$
\gamma \rightarrow e^{+}+e^{-}
$$

- Bremsstrahlung in the field of nuclei

$$
e^{ \pm} \rightarrow e^{ \pm}+\gamma \quad \underset{\longrightarrow}{\longrightarrow} \rightarrow \rightarrow e^{+}+e^{-}
$$

EAS: Electromagnetic Component

- Pair production of photons from pion decay (or primary photon):

$$
\gamma \rightarrow e^{+}+e^{-}
$$

- Bremsstrahlung in the field of nuclei

\[

\]

- Continuation of the cascade until

$$
\left(\frac{d E}{d x}\right)_{i o n}>\left(\frac{d E}{d x}\right)_{b r e m s}
$$

- Highest particle number in the shower maximum, reduction afterwards

Extended Air Showers: Discovery

- Pierre Auger, 1935 with experiments on Jungfraujoch
- Detection of coincident particles over large areas
- Highly energetic primary particle!

EAS: Measurement

- Detection of charged particles on the surface in "ground arrays"
- Measurement of flourescence light
- Measurement of Cherenkov light

Ultra-High Energy Cosmic Rays: Discovery

- John Linsley et. al, 1962, MIT Volcano Ranch Array, NM, USA
- ~8 km², 19 Detectors a $3.3 \mathrm{~m}^{2}$ (Scintillation Counters)
- Determination of primary energy based on shower size (Number of particles) on ground
- Primary energy determined to be $10^{20} \mathrm{eV}$

Extended Air Showers

Shower Multiplicity and Energy

- Particle density on ground at different distances from the shower core is a good measure for the total energy

EAS: Light Measurement

- Detection of fluorescence and Cherenkov light used to measure energy
- Also serves to reconstruct details of the shower development in the atmosphere!

Why are the highest Energies interesting?

- First and foremost: What type of objects are capable to generate such high energies?

Why are the highest Energies interesting?

- First and foremost: What type of objects are capable to generate such high energies?

Almost no deflection in magnetic fields, these particles could point to their sources!

Why are the highest Energies interesting?

- First and foremost: What type of objects are capable to generate such high energies?

Almost no deflection in magnetic fields, these particles could point to their sources!
\Rightarrow The beginning of "particle astronomy" ?

Cosmic Speed Limit?

- Greisen - Zatsepin - Kuzmin Cutoff (1966):
- Interaction of cosmic particles with photons of the CMB
- Mean free path between two collisions: ~ 50 Mpc
- At (very) high energies: Possibility for pion production:

$$
p+\gamma \rightarrow p+\pi^{0}, n+\pi^{+}
$$

Cosmic Speed Limit?

- Greisen - Zatsepin - Kuzmin Cutoff (1966):
- Interaction of cosmic particles with photons of the CMB
- Mean free path between two collisions: ~ 50 Mpc
- At (very) high energies: Possibility for pion production:

$$
p+\gamma \rightarrow p+\pi^{0}, n+\pi^{+}
$$

Center-of-mass energy of the reaction

$$
\sqrt{s}=\sqrt{m_{p}^{2}+2 E_{p} E_{\gamma}(1-\cos \alpha)}
$$

Photo-Pion Production with CMB Photons

Pion production is possible if $\sqrt{ } s>m_{p}+m_{\pi}$

Photo-Pion Production with CMB Photons

Pion production is possible if $\sqrt{ } s>m_{\rho}+m_{\pi}$
\Rightarrow Energy threshold $\quad \sqrt{s}=\sqrt{m_{p}^{2}+2 E_{p} E_{\gamma}(1-\cos \alpha)}=m_{p}+m_{\pi}$

Photo-Pion Production with CMB Photons

Pion production is possible if $\sqrt{ } s>m_{\rho}+m_{\pi}$
\Rightarrow Energy threshold $\quad \sqrt{s}=\sqrt{m_{p}^{2}+2 E_{p} E_{\gamma}(1-\cos \alpha)}=m_{p}+m_{\pi}$

$$
E_{\text {max }}=\frac{\left(m_{\pi}+m_{p}\right)^{2}-m_{p}^{2}}{2 E_{\gamma}(1-\cos \alpha)}
$$

Photo-Pion Production with CMB Photons

Pion production is possible if $\sqrt{ } s>m_{\rho}+m_{\pi}$
\Rightarrow Energy threshold $\quad \sqrt{s}=\sqrt{m_{p}^{2}+2 E_{p} E_{\gamma}(1-\cos \alpha)}=m_{p}+m_{\pi}$

$$
E_{\max }=\frac{\left(m_{\pi}+m_{p}\right)^{2}-m_{p}^{2}}{2 E_{\gamma}(1-\cos \alpha)} \Rightarrow \gamma p \rightarrow p \pi^{0}: 6.8 \times 10^{19}\left(\frac{E_{\gamma}}{10^{-3} e V}\right)^{-1} \mathrm{eV}
$$

Photo-Pion Production with CMB Photons

Pion production is possible if $\sqrt{ } s>m_{p}+m_{\pi}$
\Rightarrow Energy threshold $\quad \sqrt{s}=\sqrt{m_{p}^{2}+2 E_{p} E_{\gamma}(1-\cos \alpha)}=m_{p}+m_{\pi}$

$$
E_{\max }=\frac{\left(m_{\pi}+m_{p}\right)^{2}-m_{p}^{2}}{2 E_{\gamma}(1-\cos \alpha)} \Rightarrow \gamma p \rightarrow p \pi^{0}: 6.8 \times 10^{19}\left(\frac{E_{\gamma}}{10^{-3} \mathrm{eV}}\right)^{-1} \mathrm{eV}
$$

FIG. 3.2: Cross sections for photopion production [9]. 1 denotes the summation of all channels, $2 \gamma p \rightarrow p \pi^{0}$, $3 \gamma p \rightarrow n \pi^{+}$, and $4 \gamma p \rightarrow p+$ double pion.

Photo-Pion Production with CMB Photons

Pion production is possible if $\sqrt{ } s>m_{\rho}+m_{\pi}$
\Rightarrow Energy threshold $\quad \sqrt{s}=\sqrt{m_{p}^{2}+2 E_{p} E_{\gamma}(1-\cos \alpha)}=m_{p}+m_{\pi}$

$$
E_{\max }=\frac{\left(m_{\pi}+m_{p}\right)^{2}-m_{p}^{2}}{2 E_{\gamma}(1-\cos \alpha)} \Rightarrow \gamma p \rightarrow p \pi^{0}: 6.8 \times 10^{19}\left(\frac{E_{\gamma}}{10^{-3} e V}\right)^{-1} \mathrm{eV}
$$

- Cosmic Microwave Background: black body with $2.7 \mathrm{~K}, \sim 2.3 \times 10^{-4} \mathrm{eV}$
- Photons up to $\sim 10^{-3} \mathrm{eV}$
- Cosmic "speed limit" at
$\sim \mathbf{7} \times \mathbf{1 0}^{19} \mathrm{eV}$

FIG. 3.2: Cross sections for photopion production [9]. 1 denotes the summation of all channels, $2 \gamma p \rightarrow p \pi^{0}$, $3 \gamma p \rightarrow n \pi^{+}$, and $4 \gamma p \rightarrow p+$ double pion.

Energy Evolution due to GZK Effect

- Highly energetic particles rapidly loose energy through photo-pion production:
- Per interaction $\sim 30 \%$ of the total energy are lost
- Range of particles with energies above $\sim 10^{20} \mathrm{eV}$ is limited to < 100 Mpc

GZK on Nuclei, and other Processes

- The GZK cutoff should be even more dramatic for nuclei than for protons: photo disintegration!

GZK on Nuclei, and other Processes

- The GZK cutoff should be even more dramatic for nuclei than for protons: photo disintegration!

The threshold here is a few $10^{18} \mathrm{eV} /$ nucleon, beyond $10^{19} \mathrm{eV} /$ nucleon almost all CMB photons can excite a giant dipole resonance: Huge cross section, mean free path smaller than the size of a galaxy!

GZK on Nuclei, and other Processes

- The GZK cutoff should be even more dramatic for nuclei than for protons: photo disintegration!

The threshold here is a few $10^{18} \mathrm{eV} /$ nucleon, beyond $10^{19} \mathrm{eV} /$ nucleon almost all CMB photons can excite a giant dipole resonance: Huge cross section, mean free path smaller than the size of a galaxy!

In addition: $\mathrm{e}^{+} \mathrm{e}^{-}$- pair production with CMB photons (Bethe-Heitler-Process, analogous to Bremsstrahlung): Low energy threshold in the region of a few $10^{17} \mathrm{eV}$

GZK on Nuclei, and other Processes

- The GZK cutoff should be even more dramatic for nuclei than for protons: photo disintegration!

The threshold here is a few $10^{18} \mathrm{eV} /$ nucleon, beyond $10^{19} \mathrm{eV} /$ nucleon almost all CMB photons can excite a giant dipole resonance: Huge cross section, mean free path smaller than the size of a galaxy!

In addition: $\mathrm{e}^{+} \mathrm{e}^{-}$- pair production with CMB photons (Bethe-Heitler-Process, analogous to Bremsstrahlung): Low energy threshold in the region of a few $10^{17} \mathrm{eV}$

But: Typically only small energy loss: $2 \mathrm{~m}_{\mathrm{e}} / \mathrm{m}_{\mathrm{p}} \sim 10^{-3}$, at high energies even lower. For comparison: GZK events result in an energy loss of 30% or more!
\Rightarrow Only small effect on spectrum

GZK Effect: Limited Source Region: ~ 75 Mpc

Teilchenphysik mit kosmischen und erdgebundenen Beschleunigern:
SS 2017, 08: Cosmic Rays I

Fly's Eye

- Measurement of fluorescence light in the atmosphere

Fly's Eye: The highest-energy Particles

- The highest-energy particle ever detected on earth:
15.10.1991, Utah:

Energy $\sim 3 \times 10^{20} \mathrm{eV}$

- Stereo-Observation with two detector stations permits a precise determination of the shower direction and profile

Fly's Eye: The highest-energy Particles

- The highest-energy particle ever detected on earth: 15.10.1991, Utah:

Energy $\sim 3 \times 10^{20} \mathrm{eV}$

```
50 J!
"Oh-my-God particle"
```

- Stereo-Observation with two detector stations permits a precise determination of the shower direction and profile

GZK-Cutoff: Status - 2003

Nucl. Phys. B556, 1 (2003)

- To alleviate apparent discrepancy between different experiments: Shift of individual energy scales, so that all agree at $10^{19} \mathrm{eV}$ with Fly's Eye
- Strong indication for the existence of the GZK Cutoff

AUGER: Combination of two Techniques

UHECR Observatories Today

AUGER: In the Argentinian Pampa

AUGER: In the Argentinian Pampa

Teilchenphysik mit kosmischen und erdgebundenen Beschleunigern: SS 2017, 08: Cosmic Rays I

Telescope Array: Covering the North

Northern hemisphere: Utah, USA

AUGER Detector: Ground Array

AUGER Installation

AUGER Fluorescence Telescopes

AUGER Fluorescence Telescopes

Typical AUGER Events

The Spectrum at Highest Energies

Equivalent c.m. energy $\sqrt{\mathrm{spp}}(\mathrm{GeV})$

The Spectrum at Highest Energies

The Spectrum at Highest Energies

AUGER: Sources for UHECRs - 2007

- Highest-energy particles are not distributed isotropically
- Correlation with known close-by AGNs and with "supergalactic plane"
- Initially 70% of particles observed to be correlated to AGNs

AUGER: Sources for UHECRs - 2007

- Highest-energy particles are not distributed isotropically
- Correlation with known close-by AGNs and with "supergalactic plane"
- Initially 70\% of particles observed to be correlated to AGNs

AUGER: Sources for UHECRs - 2007

AUGER: Sources for UHECRs - 2007

- NB: VCV catalog not claiming completeness - and with more data the correlation got weaker - Still some signs of anisotropy
uncorrelated
- Highest-energy particles are not distributed is
- Correlation with known close-by AGNs and w
- Initially 70% of particles observed to be cor

One of the Top 10 Science Stories of the Year 2007

Correlation with AGNs: Current Status

- Mild correlation of observed CRs with $\mathrm{E}>5.8 \times 10^{19} \mathrm{eV}$ and very luminous AGNs closer that 130 Mpc .
- The probability to get the same (or higher) correlation with an isotropic distribution is 1.3%

circles show 18 deg. around AGN dots show CRs

AUGER: A Closer Look at Cen A

- A possible source: Centaurus A (4.2 Mpc away)
- Active galaxy, well in AUGER field of view

Cumulative event number ($\mathrm{E}>58 \mathrm{EeV}$) as a function of the angle to Cen A.

14 events within 15°
(4.5 expected) - Probability to get this (or more) for an isotropic distribution is 1.4%

AUGER and TA - The Latest Status

Composition of UHECRs: Protons vs Fe

Composition around the Knee of the Distribution

- Position of the knee depends on the element: for heavy nuclei it is at higher energy
- Fits the current understanding of acceleration mechanisms
- At higher energies heavy elements dominate (for example Fe)

Composition around the Knee of the Distribution

- Position of the knee depends on the element: for heavy nuclei it is at higher energy
- Fits the current understanding of acceleration mechanisms
- At higher energies heavy elements dominate (for example Fe)

Composition at High Energies

- Determined from shower profile

Phys. Rev. D90, 122006 (2014)

- Composition get more iron-like at high energies - Data still missing at the very highest energies (> $10^{20} \mathrm{eV}$)
- Can also be interpreted as an energy limit in the sources

Composition and Suppression Scenarios

Scenario 1

sources accelerate to maximum rigidity ("tired" sources)
energies shifted up by Z
heavy injection Si-Fe

Scenario 2

(mostly) photo-disintegration energies shifted down by \boldsymbol{A}
light elements come from heavy
CR astronomy still possible

Connection to Collider Physics

- Different LHC experiments covering most of the relevant phase space

Connection to Collider Physics

- LHC data has provided substantial input, used to tune and improve the models

Connection to Collider Physics

- One example: Evolution of cross section with energy - crucial for shower evolution

Summary

- Ultra-high energy cosmic rays create particle showers in the atmosphere
- Detection via particle multiplicity on ground and via fluorescence light
- Particles with energies up to $3 \times 10^{20} \mathrm{eV}$ have been observed
- Interactions of charged particles with photons of the cosmic microwave background introduce an energy limit for particles over long distance scales
- The GZK - Cutoff: $\sim 7 \times 10^{19} \mathrm{eV}$ for protons, experimentally well established
- The search for sources is going on: Indications of anisotropic distribution, possible correlation with AGN
- Centaurus A is one possible candidate
- Composition of cosmic rays at high energies is unclear - LHC data, including specialized experiments help to improve the simulation models

Summary

- Ultra-high energy cosmic rays create particle showers in the atmosphere
- Detection via particle multiplicity on ground and via fluorescence light
- Particles with energies up to $3 \times 10^{20} \mathrm{eV}$ have been observed
- Interactions of charged particles with photons of the cosmic microwave background introduce an energy limit for particles over long distance scales
- The GZK - Cutoff: $\sim 7 \times 10^{19} \mathrm{eV}$ for protons, experimentally well established
- The search for sources is going on: Indications of anisotropic distribution, possible correlation with AGN
- Centaurus A is one possible candidate
- Composition of cosmic rays at high energies is unclear - LHC data, including specialized experiments help to improve the simulation models

> Next Lecture: 10.07., "Cosmic Rays II", F. Simon

Lecture Overview

24.04.	Introduction \& Accelerators
01.05.	Holiday - No Lecture
08.05	Cosmic Accelerators
15.05.	Detectors
22.05.	The Standard Model
29.05.	QCD and Jets
05.06.	Holiday - No Lecture
12.06.	Neutrinos I
19.06.	Neutrinos II
26.06	No Lecture
03.07.	Cosmic Rays I
10.07.	Cosmic Rays II
17.07.	Precision Experiments
24.07.	Dark Matter, Dark Energy \& Gravitational Waves

