Teilchenphysik mit kosmischen und mit erdgebundenen Beschleunigern

08. Cosmic Rays I

03.07.2017

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Prof. Dr. Siegfried Bethke Dr. Frank Simon

Reminder:Cosmic Rays - Spectrum

- Extends over many orders of magnitude in energy and flux:
 - ▶ GeV (10⁹ eV) ZeV (10²¹)
 - >1 cm⁻²s⁻¹ < 1 km⁻² per century

• Follows a power law:

$$\frac{dN}{dE} \propto E^{-\gamma}$$

•
$$\gamma \sim 2.7$$
 E < 10¹⁵ eV

•
$$\gamma \sim 3.0$$
 10¹⁵ eV < E < 10¹⁸ eV

Cosmic Rays: Spectrum & Experiments

- The experimental technique used depends on particle energy and flux
 - Direct measurement via balloon experiments and satellites, active area ~ 1 m²
 - Measurement with airshower arrays active area ~ 10 000 m²
 - Measurement with giant airshower arrays

Active area ~ 1000 km²

Air Showers: The Atmosphere as Calorimeter

- Nuclear interaction length $\lambda_l \sim 90 \text{ g/cm}^2$
- Radiation length X₀ ~ 36.6 g/cm²
- Density of the atmosphere: ~ 1035 g/cm²
- ~ 11 λ_I, ~ 28 X₀

Reminder:

Radiation length: Energy loss of electrons in matter: Nuklear interaction length: Typical mean free path between nuclear reactions, Probability that no interaction is taking place: $\langle E_e(x) \rangle \propto e^{\frac{x}{X_0}}$ $P(x) = e^{\frac{-x}{\lambda_I}}$

Extended Air Showers (EAS)

EAS: In the Atmosphere

Teilchenphysik mit kosmischen und erdgebundenen Beschleunigern: SS 2017, 08: Cosmic Rays I

6

EAS: Hadronic Component

• Inelastic reactions of the incoming hadron (proton, nucleus) with nuclei in the atmosphere after ~ 1 λ_l , typically energy loss of 40%-60%, production of secondary hadrons: p, n, π^0 , π^{\pm} , K^{\pm} , ...

EAS: Hadronic Component

- Inelastic reactions of the incoming hadron (proton, nucleus) with nuclei in the atmosphere after ~ 1 λ_I , typically energy loss of 40%-60%, production of secondary hadrons: p, n, π^0 , π^{\pm} , K^{\pm} , ...
- Neutral pions: $\pi^0 \rightarrow \gamma \gamma, \ \tau \sim 10^{-16} s$
 - electromagnetic shower

EAS: Hadronic Component

- Inelastic reactions of the incoming hadron (proton, nucleus) with nuclei in the atmosphere after ~ 1 λ_I , typically energy loss of 40%-60%, production of secondary hadrons: p, n, π^0 , π^{\pm} , K^{\pm} , ...
- Neutral pions: $\pi^0 \rightarrow \gamma \gamma, \ \tau \sim 10^{-16} s$
 - electromagnetic shower
- Charged pions: $\pi^{\pm} \rightarrow \mu^{\pm} \nu_{\mu}, \ \tau \sim 2.6 \times 10^{-8} s \ (c\tau \sim 8 m)$
 - Hadronic interaction before decay, or decay into muon + neutrino (at energies of ~ 10 - 20 GeV the range is ~ 1 λ_l)
 - Muonic component is integrating: Muon decay irrelevant on shower time scale, lifetime ~ 2 x 10⁻⁶ s
 - The production of additional hadrons dominates early in the shower, towards the end decay into muons is more probable

7

EAS: Electromagnetic Component

• Pair production of photons from pion decay (or primary photon):

$$\gamma \rightarrow e^+ + e^-$$

EAS: Electromagnetic Component

• Pair production of photons from pion decay (or primary photon):

$$\gamma \rightarrow e^+ + e^-$$

• Bremsstrahlung in the field of nuclei

EAS: Electromagnetic Component

• Pair production of photons from pion decay (or primary photon):

$$\gamma \rightarrow e^+ + e^-$$

• Bremsstrahlung in the field of nuclei

• Continuation of the cascade until

$$\left(\frac{dE}{dx}\right)_{ion} > \left(\frac{dE}{dx}\right)_{brems}$$

• Highest particle number in the shower maximum, reduction afterwards

8

Extended Air Showers: Discovery

- Pierre Auger, 1935 with experiments on Jungfraujoch
 - Detection of coincident particles over large areas
 - Highly energetic primary particle!

Teilchenphysik mit kosmischen und erdgebundenen Beschleunigern: SS 2017, 08: Cosmic Rays I

9

EAS: Measurement

- Detection of charged particles on the surface in "ground arrays"
- Measurement of flourescence light
- Measurement of Cherenkov light

Ultra-High Energy Cosmic Rays: Discovery

- John Linsley et. al, 1962, MIT Volcano Ranch Array, NM, USA
- ~8 km², 19 Detectors a 3.3 m² (Scintillation Counters)
- Determination of primary energy based on shower size (Number of particles) on ground

 Primary energy determined to be 10²⁰ eV

Extended Air Showers

AUGER TDR

Shower Multiplicity and Energy

 Particle density on ground at different distances from the shower core is a good measure for the total energy

Teilchenphysik mit kosmischen und erdgebundenen Beschleunigern: SS 2017, 08: Cosmic Rays I

AUGER TDR

EAS: Light Measurement

- Detection of fluorescence and Cherenkov light used to measure energy
- Also serves to reconstruct details of the shower development in the atmosphere!

Teilchenphysik mit kosmischen und erdgebundenen Beschleunigern: SS 2017, 08: Cosmic Rays I AUGER TDR

Why are the highest Energies interesting?

 First and foremost: What type of objects are capable to generate such high energies?

Why are the highest Energies interesting?

 First and foremost: What type of objects are capable to generate such high energies?

Almost no deflection in magnetic fields, these particles could point to their sources!

Why are the highest Energies interesting?

 First and foremost: What type of objects are capable to generate such high energies?

Almost no deflection in magnetic fields, these particles could point to their sources!

The beginning of "particle astronomy" ?

Cosmic Speed Limit?

- Greisen Zatsepin Kuzmin Cutoff (1966):
 - Interaction of cosmic particles with photons of the CMB
 - Mean free path between two collisions: ~ 50 Mpc
 - At (very) high energies: Possibility for pion production:

$$p + \gamma \rightarrow p + \pi^0, \ n + \pi^+$$

Cosmic Speed Limit?

- Greisen Zatsepin Kuzmin Cutoff (1966):
 - Interaction of cosmic particles with photons of the CMB
 - Mean free path between two collisions: ~ 50 Mpc
 - At (very) high energies: Possibility for pion production:

$$p + \gamma \rightarrow p + \pi^0, \ n + \pi^+$$

Center-of-mass energy of the reaction

$$\sqrt{s} = \sqrt{m_p^2 + 2E_p E_\gamma (1 - \cos\alpha)}$$

Pion production is possible if $\sqrt{s} > m_p + m_\pi$

Pion production is possible if $\sqrt{s} > m_p + m_\pi$

 $\Rightarrow \text{ Energy threshold } \quad \sqrt{s} = \sqrt{m_p^2 + 2E_p E_\gamma (1 - \cos\alpha)} = m_p + m_\pi$

Pion production is possible if $\sqrt{s} > m_p + m_{\pi}$

 $\Rightarrow \text{ Energy threshold } \quad \sqrt{s} = \sqrt{m_p^2 + 2E_p E_\gamma (1 - \cos\alpha)} = m_p + m_\pi$

$$E_{max} = \frac{(m_\pi + m_p)^2 - m_p^2}{2E_\gamma(1 - \cos\alpha)}$$

Pion production is possible if $\sqrt{s} > m_p + m_{\pi}$

 $\Rightarrow \text{ Energy threshold } \quad \sqrt{s} = \sqrt{m_p^2 + 2E_p E_\gamma (1 - \cos\alpha)} = m_p + m_\pi$

$$E_{max} = \frac{(m_{\pi} + m_{p})^{2} - m_{p}^{2}}{2E_{\gamma}(1 - \cos\alpha)} \implies \gamma p \to p\pi^{0} : 6.8 \times 10^{19} \left(\frac{E_{\gamma}}{10^{-3}eV}\right)^{-1} \text{eV}$$

Pion production is possible if $\sqrt{s} > m_p + m_{\pi}$

$$\Rightarrow \text{ Energy threshold } \sqrt{s} = \sqrt{m_p^2 + 2E_p E_\gamma (1 - \cos\alpha)} = m_p + m_\pi$$

$$E_{max} = \frac{(m_{\pi} + m_{p})^{2} - m_{p}^{2}}{2E_{\gamma}(1 - \cos\alpha)} \implies \gamma p \to p\pi^{0} : 6.8 \times 10^{19} \left(\frac{E_{\gamma}}{10^{-3}eV}\right)^{-1} \text{eV}$$

FIG. 3.2: Cross sections for photopion production [9]. 1 denotes the summation of all channels, $2 \gamma p \rightarrow p\pi^0$, $3 \gamma p \rightarrow n\pi^+$, and $4 \gamma p \rightarrow p + double pion$.

S. Yoshida, "Ultra-High Energy Particle Astrophysics"

Pion production is possible if $\sqrt{s} > m_p + m_{\pi}$

 $\Rightarrow \text{ Energy threshold } \quad \sqrt{s} = \sqrt{m_p^2 + 2E_p E_\gamma (1 - \cos\alpha)} = m_p + m_\pi$

$$E_{max} = \frac{(m_{\pi} + m_{p})^{2} - m_{p}^{2}}{2E_{\gamma}(1 - \cos\alpha)} \implies \gamma p \to p\pi^{0} : 6.8 \times 10^{19} \left(\frac{E_{\gamma}}{10^{-3}eV}\right)^{-1} \text{eV}$$

- Cosmic Microwave Background: black body with 2.7 K, ~ 2.3 x 10⁻⁴ eV
 - ▶ Photons up to ~ 10⁻³ eV
- Cosmic "speed limit" at
 - ~ 7 x10¹⁹ eV

FIG. 3.2: Cross sections for photopion production [9]. 1 denotes the summation of all channels, $2 \gamma p \rightarrow p\pi^0$, $3 \gamma p \rightarrow n\pi^+$, and $4 \gamma p \rightarrow p + double pion$.

S. Yoshida, "Ultra-High Energy Particle Astrophysics"

Teilchenphysik mit kosmischen und erdgebundenen Beschleunigern: SS 2017, 08: Cosmic Rays I

Frank Simon (fsimon@mpp.mpg.de) 17

Energy Evolution due to GZK Effect

- Highly energetic particles rapidly loose energy through photo-pion production:
 - Per interaction ~ 30% of the total energy are lost
- Range of particles with energies above ~10²⁰ eV is limited to < 100 Mpc

• The GZK cutoff should be even more dramatic for nuclei than for protons: photo disintegration!

 The GZK cutoff should be even more dramatic for nuclei than for protons: photo disintegration!

The threshold here is a few 10¹⁸ eV/nucleon, beyond 10¹⁹ eV/nucleon almost all CMB photons can excite a giant dipole resonance: Huge cross section, mean free path smaller than the size of a galaxy!

• The GZK cutoff should be even more dramatic for nuclei than for protons: photo disintegration!

The threshold here is a few 10¹⁸ eV/nucleon, beyond 10¹⁹ eV/nucleon almost all CMB photons can excite a giant dipole resonance: Huge cross section, mean free path smaller than the size of a galaxy!

In addition: e^+e^- - pair production with CMB photons (Bethe-Heitler-Process, analogous to Bremsstrahlung): Low energy threshold in the region of a few 10^{17} eV

• The GZK cutoff should be even more dramatic for nuclei than for protons: photo disintegration!

The threshold here is a few 10¹⁸ eV/nucleon, beyond 10¹⁹ eV/nucleon almost all CMB photons can excite a giant dipole resonance: Huge cross section, mean free path smaller than the size of a galaxy!

In addition: e^+e^- - pair production with CMB photons (Bethe-Heitler-Process, analogous to Bremsstrahlung): Low energy threshold in the region of a few 10^{17} eV

But: Typically only small energy loss: $2m_e/m_p \sim 10^{-3}$, at high energies even lower. For comparison: GZK events result in an energy loss of 30% or more!

GZK Effect: Limited Source Region: ~ 75 Mpc

Fly's Eye

• Measurement of fluorescence light in the atmosphere

Fly's Eye: The highest-energy Particles

 The highest-energy particle ever detected on earth: 15.10.1991, Utah: Energy ~ 3 x 10²⁰ eV

 Stereo-Observation with two detector stations permits a precise determination of the shower direction and profile

Fly's Eye: The highest-energy Particles

 The highest-energy particle ever detected on earth: 15.10.1991, Utah: Energy ~ 3 x 10²⁰ eV

> 50 J ! "Oh-my-God particle"

 Stereo-Observation with two detector stations permits a precise determination of the shower direction and profile

GZK-Cutoff: Status - 2003

- To alleviate apparent discrepancy between different experiments: Shift of individual energy scales, so that all agree at 10¹⁹ eV with Fly's Eye
- Strong indication for the existence of the GZK Cutoff

AUGER: Combination of two Techniques

multipolar expansion onto the spherical mapmonies $\gamma_{lm}(m)$.

 $2 > 0 m = -\ell$

The directional expose

haspediveriaters

each consulton and the stars

UHECR Observatories Today $\Phi(\mathbf{n})$

Telescope Array (TA)

Delta, UT, USA 507 detector stations, 680 km² 36 fluorescence telescopes

Pierre Auger Observatory

Province Mendoza, Argentina 1660 detector stations, 3000 km² 27 fluorescence telescopes

SS 2017, 08: Cosmic Rays I

Any anisotropy fingerprint is encoded in the analysis of the second seco poles. Non-zero amplitudes in the *l* thed sums of the vindividual ations of the flux on an angular scale frage frage there to be re-w The directional exposure of each observatory provid the effective time-integrated collecting area each direction of the sky. In princip EU is contrate a perim tional exposure of the two experimenta storige the sum of the individual ones. However, ind sures have here to be re-weighted by some b due to the unavoidable uncertainty at the of the x sures of the experiments. The paranaetos of the experiments. **zio**g as a fudge factor which absorbs any kind of certainties in the relative exposures, whateve of these uncertainties. This empiricate ache direction of the sk chosen to re-weight the directional exposure of the Bierre 8 Auger Observatory relativ_[0-60°] the sum of the decis ray $\omega(\mathbf{n};b) = \omega_{\mathrm{TA}}(\mathbf{n}) + b \omega_{\mathrm{TA}}(\mathbf{$ Dead times of detectors modulate is discussion with a worder sure of each experiment in sidereal of standard the sidereal of the sidereal o right ascension. However, once average Teilchenphysik mit kosmischen und er gebürdten et abeiangeutigerne elative modulations neinei adi y ω_{Auger} in right ascension turn out to be not far

AUGER: In the Argentinian Pampa

An Ayatt

AUGER: In the Argentinian Pampa

A+ Ay>+t

Telescope Array: Covering the North

Northern hemisphere: Utah, USA

AUGER Detector: Ground Array

Ast Ayatt

Teilchenphysik mit kosmischen und erdgebundenen Beschleunigern: SS 2017, 08: Cosmic Rays I

28

AUGER Installation

AUGER Fluorescence Telescopes

AL+ Ayzit

AUGER Fluorescence Telescopes

• 440 PMTs, 1.5° per Pixel

The Spectrum at Highest Energies

The Spectrum at Highest Energies

The Spectrum at Highest Energies

 Highest-energy particles are not distributed isotropically clei: sources or tracer of sources
lection Gottelation With the work of the source?

• Initially 70% of particles observed to be correlated to AGNs

 Highest-energy particles are not distributed isotropically clei: sources or tracer of sources

ection Governments ion with the the work of the sector of the supergalactic plane"

Initially 70% of particles observed to be correlated to AGNs

 Highest-energy particles are not distributed is clei: sources or tracer of sources ection.Gottelation with knew n close-by AGNs and wi

Initially 70% of particles observed to be cor

9 November 2007 | \$10

Science

 NB: VCV catalog not claiming completeness - and with more data the correlation got weaker - Still some signs of anisotropy

uncorrelated

 Highest-energy particles are not distributed is clei: sources or tracer of sources ection.Gottelation with known close-by AGNs and wi

Initially 70% of particles observed to be cor

Correlation with AGNs: Current Status

- Mild correlation of observed CRs with E > 5.8 x10¹⁹ eV and very luminous AGNs closer that 130 Mpc.
 - The probability to get the same (or higher) correlation with an isotropic distribution is 1.3%

AUGER: A Closer Look at Cen A

• A possible source: Centaurus A (4.2 Mpc away)

• Active galaxy, well in AUGER field of view

AUGER and TA - The Latest Status

Teilchenphysik mit kosmischen und erdgebundenen Beschleunigern:

Composition of UHECRs: Protons vs Fe

- Distinction of primary particles possible based on shower structure:
 - Showers of heavy nuclei start "faster" and reach an earlier shower maximum

http://www.ast.leeds.ac.uk/~fs/showerimages.html

Composition around the Knee of the Distribution

- Position of the knee depends on the element: for heavy nuclei it is at higher energy
 - Fits the current understanding of acceleration mechanisms
- At higher energies heavy elements dominate (for example Fe)

Composition around the Knee of the Distribution

- Position of the knee depends on the element: for heavy nuclei it is at higher energy
 - Fits the current understanding of acceleration mechanisms
- At higher energies heavy elements dominate (for example Fe)

Composition at High Energies

- Composition get more iron-like at high energies Data still missing at the very highest energies (> 10²⁰ eV)
 - Can also be interpreted as an energy limit in the sources

Composition and Suppression Scenarios

Hooper, ApP 33 (2010) 151 Fe р He 10³⁶ $\frac{20}{\log_{10}(E/eV)}$ 20.5 18.5 19 19.5 18 (mostly) photo-disintegration energies shifted down by A light elements come from heavy CR astronomy still possible

Scenario 2

Connection to Collider Physics

• Different LHC experiments covering most of the relevant phase space

Ar Ayatt

A. Particle pseudorapidity densities Connection to Collider Physics

Connection to Collider Physics

Summary

- Ultra-high energy cosmic rays create particle showers in the atmosphere
 - Detection via particle multiplicity on ground and via fluorescence light
- Particles with energies up to 3 x 10²⁰ eV have been observed
- Interactions of charged particles with photons of the cosmic microwave background introduce an energy limit for particles over long distance scales
 - The GZK Cutoff: ~ 7 x 10^{19} eV for protons, experimentally well established
- The search for sources is going on: Indications of anisotropic distribution, possible correlation with AGN
 - Centaurus A is one possible candidate
- Composition of cosmic rays at high energies is unclear LHC data, including specialized experiments help to improve the simulation models

Summary

- Ultra-high energy cosmic rays create particle showers in the atmosphere
 - Detection via particle multiplicity on ground and via fluorescence light
- Particles with energies up to 3 x 10²⁰ eV have been observed
- Interactions of charged particles with photons of the cosmic microwave background introduce an energy limit for particles over long distance scales
 - The GZK Cutoff: ~ 7 x 10^{19} eV for protons, experimentally well established
- The search for sources is going on: Indications of anisotropic distribution, possible correlation with AGN
 - Centaurus A is one possible candidate
- Composition of cosmic rays at high energies is unclear LHC data, including specialized experiments help to improve the simulation models

Next Lecture: 10.07., "Cosmic Rays II", F. Simon

Lecture Overview

24.04.	Introduction & Accelerators
01.05.	Holiday - No Lecture
08.05	Cosmic Accelerators
15.05.	Detectors
22.05.	The Standard Model
29.05.	QCD and Jets
05.06.	Holiday - No Lecture
12.06.	Neutrinos I
19.06.	Neutrinos II
26.06	No Lecture
03.07.	Cosmic Rays I
10.07.	Cosmic Rays II
17.07.	Precision Experiments
24.07.	Dark Matter, Dark Energy & Gravitational Waves

