Dark Matter (and Dark Energy)

- Inventory of the Universe
- the expanding Universe
- Evidence for the Existence of Dark Matter:
 - rotational curves of spiral Galaxies
 - microwave background and cosmic energy density
 - galaxy clusters
- cosmological constraints
- DM: particle candidates and searches
- example: the CRESST experiment

Inventory of the Universe:

(from: CMB, SN Ia, lensing, BAO,...)

13.798 ± 0.037 Billion years Age:

 $31.7\% \pm 0.4\%$ (total) matter fraction:

 $4.9\% \pm 0.1\%$ (baryonic matter)

0.5% ± 0.1% (luminous matter)

26.8% ± 0.4% (unknown; non-baryonic!) Dark Matter.

Dark Energy: 68.3% ± 1% (unknown!)

candidates for Dark Matter:

- HDM: massive Neutrinos

- CDM: Axions, SUSY-WIMPs

Inventory of the Universe (PLANCK):

today t~13.7·10⁹ y

t~380.000 y

The expanding Universe

Hubble's Law:

 $V_{\text{expansion}} = \overline{H_0} \cdot \text{distance}$

Hubble Constant:

 $H_0 = h \ 100 \text{ km s}^{-1} \text{ Mpc}^{-1}$

experimental value:

 $h = 0.683 \pm 0.010$

cosmic distances:

 $1 \text{ Mpc} = 3.26 \cdot 10^6 \text{ lyr}$ $= 3.08 \cdot 10^{22} \text{ m}$

expansion age of the Universe: $t_0 \sim H_0^{-1} = h^{-1} 9.78 \cdot 10^9 \text{ yr}$

The expanding Universe

components of cosmic matter- and energy-density

contribution ρ of matter components to total density of the universe:

$$\Omega = \rho \, / \, \rho_{crit}$$

$$\rho_{crit} = 3H_0^2 / (8\pi G_N)$$
= h² 1.88 × 10⁻²⁹ g cm⁻³

$$\Omega = 1$$
: euclidian geometry ("flat universe")

$$\Omega$$
 < 1: negative curvature of space ("open universe")

$$\Omega > 1$$
: positive curvature of space ("closed universe")

Global Cosmic Geometry

Euclidean (flat) k = 0 Ω_{tot} = 1

Favored by

- → Inflationary cosmological models
- Recent cosmic microwave background measurements

1. cosmological arguments

 $\Omega_{\rm tot} = 1$ because, in an expanding universe, Ω_{tot} quickly develops away from 1, towards 0 or ∞ .

if today $\Omega_{tot} \sim 1$, then $\Omega_{tot} = 1$ is most probable exact solution.

2. Dark Matter in galaxy clusters (Zwicky 1933):

a gravitationally bound many-particle system in equilibrium obeys the Virial Theorem.

Coma Galaxy Cluster

Virial Theorem:
$$2\langle E_{kin} \rangle = -\langle E_{grav} \rangle$$

 $E_{kin} = mv^2/2$, $E_{grav} = G_N M_r m/r$
 $\Rightarrow \langle v^2 \rangle \approx G_N M \langle r^{-1} \rangle$

measurement of dispersion of velocity and geometrical size provides estimate of M (total mass)

result: $M \sim 400 \cdot \text{visible mass!}$

(not commonly believed in for long!)

3. rotational curves of spiral galaxies

- expectation outside of galactic centre (Kepler): $v_{rot} = \sqrt{G_N M/r}$
- measurement: 21 cm emission line of neutral Hydrogen (possible to much larger distances than optical observations)
- result: ~constant distribution up to largest distances
- —> "spherical halo" of Dark Matter (not only in disk!)
- in our own galaxy: v_{rot} (plateau) ~ 220 km s⁻¹; halo with ~300 MeV cm⁻³ (ca. 1 H-Atom per 3 cm³!)

4. galaxy clusters, gravitational lensing

4. galaxy clusters, gravitational lensing

Weak Lensing Effect - Computer Simulation

[A.Tyson, Physics Today, 1992:6, pg.24]

Field of distant background galaxies ...

... seen through a spherical, transparent mass distribution, representing a foreground galaxy cluster.

Same with twice the cluster mass.

4. galaxy clusters, gravitational lensing

Gravitational Lens in Abell 2218

HST · WFPC2

PF95-14 · ST Scl OPO · April 5, 1995 · W. Couch (UNSW), NASA

cosmological boundary conditions

could Dark Matter be composed of hadronic, non-luminous matter, as e.g. neutron stars, cold molecular hydrogen clouds, or Black Holes?

No!

reason: baryon density of universe is limited by so-called "Big Bang Nucleosynthesis:"

about 3 minutes after the Big Bang, Helium (22%-25% of total mass) as well as traces of D, He³und Li⁷ are created from protons and neutrons.

their relative amounts only depend on cosmic density of baryons!

however, primordial black holes are NOT part of this inventory!

primordial black holes ...?

cosmological boundary conditions

structure formation

Standard Theory of cosmic structure formation:

- at an early stage, the universum was almost entirely homogenous...
- except of tiny density modulations, leading to conglomeration (by gravitation) of mass and built-up of galaxies.
- modulations originate from quantum fluctuations, which blew up, in a period of exponential expansion ("inflationary universe"), to macroskopic scales

cosmological boundary conditions

structure formation

- amplitude of density fluctuations at an early stage (e.g. at decoupling of photons, about 300.000 years after Big Bang) reveals composition of matter and energy of early universe
- measurements of granularity of cosmic (2.7 K) microwave background (COBE; WMAP; Planck) shows: these amplitudes are too small to explain today's structure, if only baryonic matter and photons present.
- weakly interacting matter would work best, not being influenced by (electromagnetic) radiation.

COBE Satellit

John Mather and George Smoot Nobelpreis 2006

Messung der Anisotropie und der Granularität der kosmischen 2.7 Kelvin Hintergrundstrahlung:

"Photographie" der Dichtestruktur des Universums als es transparent wurde (380.000 Jahre n.U.)

WMAP Satellit (Wilkinson Microwave Anisotropy Probe)

Messung der Anisotropie und der Granularität der kosmischen 2.7 Kelvin Hintergrundstrahlung:

"Photographie" der Dichtestruktur des Universums als es transparent wurde (380.000 Jahre n.U.)

Planck Satellit (2013)

Messung der Anisotropie und der Granularität der kosmischen 2.7 Kelvin Hintergrundstrahlung:

"Photographie" der Dichtestruktur des Universums als es transparent wurde (380.000 Jahre n.U.)

Planck Satellit

(gestartet 15.5.2009)

3-faches Auflösungsermögen und 10-fache Lichtstärke (verglichen mit WMAP) -> Messung bis 1~2500

Zünzlertziochen eine der Alternocken der Schrift der Alternocken der Schrift der Alternocken der Schrift der Alternocken der A

Messung der Anisotropie und der Granularität der kosmischen 2.7 Kelvin Hintergrundstrahlung

(Effekte der Heimatgalxie sowie Dipol aus Bewegung der Erde und des Sonnensystems sind subtrahiert)

Analyse: Temperaturunterschied zweier Punkte auftragen gegen den Winkelabstand; "Multipolanalyse" (Dipol: min-max bei

180°, Quadrupol: 90°,...)
Particle Physics with cosmic and with terrestrial accelerators

arXiv:1001.4538 [astro-ph]

The WMAP 7-year temperature power spectrum (Larson et al. [2010), along with the temperature power spectra from the ACBAR (Reichardt et al. [2009) and QUaD (Brown et al. [2009) experiments. We show the ACBAR and QUaD data only at $l \ge 690$, where the errors in the WMAP power spectrum are dominated by noise. We do not use the power spectrum at l > 2000 because of a potential contribution from the SZ effect and point sources. The solid line shows the best-fitting 6-parameter flat Λ CDM model to the WMAP data alone (see the 3rd column of Table [I] for the maximum likelihood parameters).

Fig. 1. The Planck 2015 temperature power spectrum. At multipoles $\ell \ge 30$ we show the maximum likelihood frequency averaged temperature spectrum computed from the Plik cross-half-mission likelihood with foreground and other nuisance parameters determined from the MCMC analysis of the base Λ CDM cosmology. In the multipole range $2 \le \ell \le 29$, we plot the power spectrum estimates from the Commander component-separation algorithm computed over 94% of the sky. The best-fit base Λ CDM theoretical spectrum fitted to the Planck TT+lowP likelihood is plotted in the upper panel. Residuals with respect to this model are shown in the lower panel. The error bars show $\pm 1 \sigma$ uncertainties.

newest inventory of the Universe (Planck):

arXiv:1303.5062 [astro-ph.CO] arXiv:1502.15082 [astro-ph.CO]

13.799 ± 0.038 billion years Age:

69,2% ± 1.2% $\Omega_{
m dark\ energy}$

25.9% ± 1,2% Ω cold dark matter

4.9% ± 0.1% $\Omega_{\rm baryons}$

30.8% ± 1.2% Ω_{m}

 $67.8 \pm 0.9 \, \text{km} / \text{s} / \text{Mpc}$

further cosmological measurements of fraction of dark energy:

Supernovae type la as "standard candles"

measurement of the history of cosmic expansion: Supernovae (type Ia) as standard candles (i.e objects known absolute brightness).

type I: no hydrogen lines in spectrum (progenitor is carbon-oxygene white dwarf in binary system, accreting mass beoynd the Chadarsekhar limit of $\sim 1.44~M_{sun}$)

type la: additional Si absorption lines

further cosmological measurements of fraction of dark energy:

- Supernovae type la as "standard candles"

CMB: Cosmic Microwave Background (WMAP)

SNe: Supernovae Ia

BAO: Baryon Accustic Oscillations (aus Sloan Digital Sky Survey der Galaxien)

general candidates for Dark Matter (particle physics):

- HDM: massive Neutrinos
 - "hot": relativistic; would wash out primordial structures (too) rapidly to explain today's structure
- CDM: Axions, SUSY-WIMPs
 - "cold": massive and non-relativistic; preserves primordial structure.

- Dark Energy: ... no clue in (exp.) particle physics...!

Supersymmetry (SUSY)

- provides cancellation of divergent radiative corrections -> solves hierarchy problem
- postulates symmetry between fermions und bosons: new fermion- (boson-) partners for all known fundamental bosons (fermions)

particles	Spin	SUSY particles	Spin
Quark Q	1/2	Squark $ ilde{Q}$	0
Lepton l	1/2	Slepton \tilde{l}	0
Photon γ	1	Photino γ	1/2
Gluon g	1	Gluino g	1/2
W^{\pm}	1	Wino \widetilde{W}^{\pm}	1/.2
Z^0	1	Zino \widetilde{Z}^0	1/2

- Higgs structure in Minimal Supersymmetric Standard Model (MSSM): 2 complex Higgs-doublets (8 free scalar parameters) -> 5 physical Higgs fields: H^{\pm} , H_1^0 , H_2^0 , A^0 . consistency requirement: $M_{H_1^0} \le 130 \text{ GeV}$
- gauginos ($\tilde{\gamma}$, \tilde{W}^{\pm} , \tilde{Z}) mix with higgsinos and therefore result in 4 charginos ($\chi_{1,2}^{\pm}$) und 4 neutralinos ($\chi_{1,2,3,4}^{0}$)

Supersymmetry (SUSY)

- 124 free parameters (!!) to describe masses and couplings of all SUSY particles; one of these: angle β , with $tan(\beta) = v_1/v_2$. Only known constraint: $(v_1^2 + v_2^2) = 246 \text{ GeV}^2$
- new conserved quantity: "R-parity": $R = (-1)^{3(B-L)+2S}$ (B, L: Baryon-/Lepton-number; S: Spin); R = +1 for normal matter particles, R = -1 für supersymmetric sparticles
- if R-parity conserved:
- SUSY particles are produced in pairs
- SUSY sparticles all decay into "lightest Susy Particle", LSP, which itself is stable.
- cosmological arguments: LSP carries no electric and no colour charge <-> only weak and gravitat. interactions!
 - -> in particle reactions, leads to missing energy (like neutrinos).
- Supersymmetry with masses of O(1 10 TeV) leads to change of energy dependence of coupling constants, such that "unification" occurs at $E \sim 10^{16} \text{ GeV}$ -> proton lifetime >> 10³² years (beyond current experimental sensitivity) within SUSY-GUT.
- LSP is main candidate for Cold Dark Matter (CDM).

Search for Dark Matter

direct:

- Large Hadron Collider ... (direct production and investigation of its properties)
- Search for WIMP* scattering in cryo-detectors

• indirect:

– WIMP pair annihilation inside Earth, Sun, centers of galaxies (into 2 photons, or Neutrino-Antineutrino; neutrino-telescopes as ICECUBE; cosmic ray exps.)

The CRESST Dark Matter Search

Collaboration
MPI für Physik, Oxford University,
TU München, Universität Tübingen
Laboratori Nazionali del Gran Sasso

Cryogenic Dark Matter search

Located in hall A of LNGS

Scintillating CaWO₄ target crystals

Up to 33 crystals in modular structure (10 kg target)

CRESST Detectors

- → Phonon channel measures deposited energy with sub keV resolution and accuracy
- → Light channel serves to distinguish types of interaction
- → Types of recoiling nuclei distinguished by different slopes in energy-light plane

Discrimination of Event Types

$$Light\ Yield = \frac{E_{light}}{E_{phonon}}$$

Event types characterized by different light yield

- efficient discrimination of nuclear recoils from β/γ-background
- WIMP signals expected in nuclear recoil bands

WIMP search region ROI includes O, Ca, and W bands

Types of Recoils in CaWO₄

Assuming:

- $\sigma \propto A^2$
- detection in 12 to 40 keV range

- For M<10 GeV only oxygen
- Calcium important around 10 GeV
- Tungsten dominates at larger WIMP masses due to σ∝A²
- → type of recoils, together with the recoil energy spectrum, offers very detailed information on mass of possible WIMP

300 g Detector Module

light detector

phonon detector

Status of direct DM (WIMP) Searches

direct DM (WIMP) Searches at colliders

at LHC: need to trigger on associate production

- search for: mono-jet
 - mono-V (Z⁰, W[±])
 - mono-Higgs
 - DM + $t\bar{t}$
 - invisible Higgs decays

direct DM (WIMP) Searches at colliders

from study of invisible Higgs-decays, arXiv:1610.09218

Summary

- non-baryonic Dark Matter (and Dark Energy) dominate mass-/energy density of Universe (~95%)
- Evidence for DM: from rotation of galaxies, structure formation, granularity of cosmic microwave background,
- only small contribution of hot dark matter (e.g. Neutrinos)
- candidates for cold dark matter: (SUSY) WIMPs, Axions,....
- indirect search: e.g. cosmic WIMP Annihilation; direct search: WIMP scattering in cryo detectors; LHC;
- nature of Dark Energy can only be studied by cosmological (astrophysical) means

literature:

- G. Bertone, D. Hooper, J. Silk: Particle Dark Matter: Evidence, Candidates and Constraints, hep-ph/0404157.
- John A. Peacock, *Cosmological Physics*, Cambridge University Press 1999.
- div. Kosmologie Artikel in: particle data group, pdg.lbl.gov
- M. Kowalski et 1., Improved Cosmological Constraints from New, Old and Combined Supernova Datasets, arXiv:0804.4142v1
- D. Eisenstein et al., Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies, arXiv:astro-ph/0501171v1
- Planck 2013 results. I. Overview of products and scientific results <u>Planck</u> Collaboration (<u>P.A.R. Ade</u> (<u>Cardiff U.</u>) et al.). Mar 20, arXiv:1303.5062 [astro-ph.CO]
- Planck 2015 results. XIII. Cosmological parameters Planck Collaboration (P.A.R. Ade (Cardiff U.) et al.). Feb 5, 2015. arXiv:1502.01589 [astro-ph.CO]
- Review of LHC Dark Matter Searches, F. Kahlhoefer, arXiv:1702.02430

