ATLAS MDT ASD_V4

Design

May 29th, 2017

Federica Resta Marcello De Matteis

andrea.baschirotto@sparklingic.com

- Channel Block Scheme $\leftarrow \leftarrow \leftarrow$
- Charge Sensitive Preamplifier
- Differential Amplifiers
- Wilkinson ADC
- Measurements Summary
- Conclusion

ASDv4 Channel Block Scheme

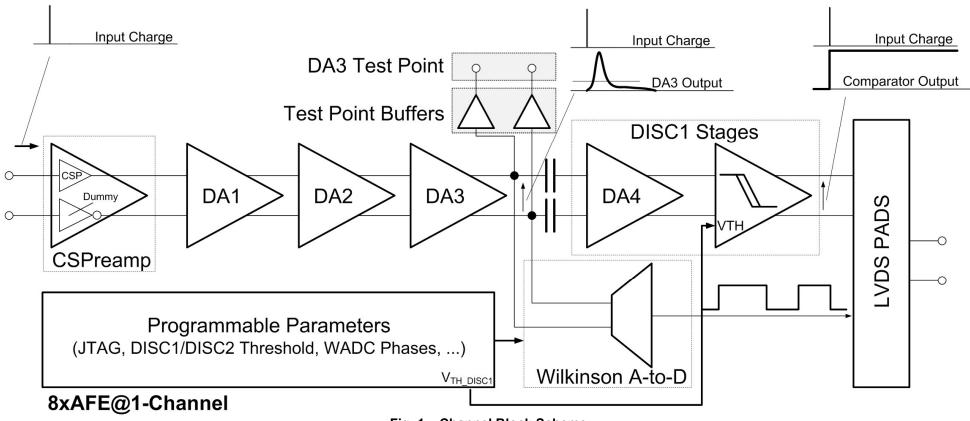


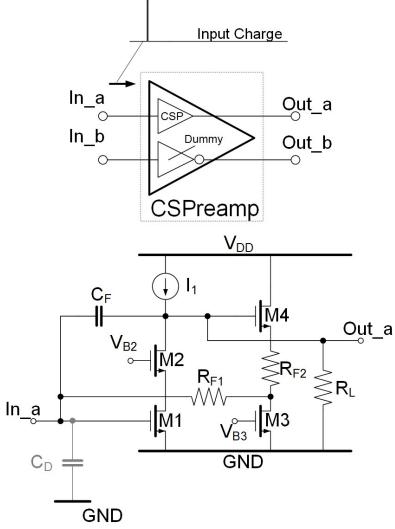
Fig. 1 – Channel Block Scheme.

Channel Critical Design Points (1/2)

- <u>CMOS Technological Node</u>
 - o **130nm**
 - 3.3V Supply Voltage
 - $\,\circ\,$ V_{TH} Reduction
 - 0.45V vs 0.75V
 - $_{\odot}\,$ Sligth Reduction of intrinsic MOS gain
 - Smaller Signal
 - $_{\odot}\,$ Substrate influenced by rail-to-rail digital signals
 - \circ Smaller Area
- <u>Detector Parasitic Capacitance</u>
 - 60pF

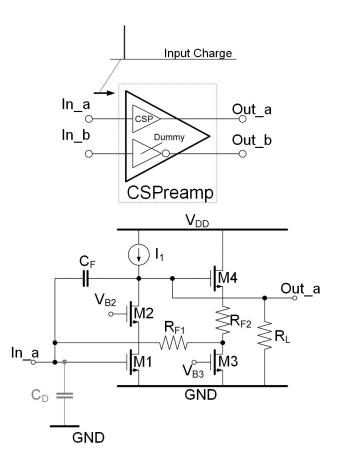
Required a <u>CAREFUL</u> CSPreamp Design

Channel Critical Design Points (1/2)


- <u>CSPreamp</u>
 - INPUT and KEY BLOCK
 - Charge to Voltage Conversion
 - $_{\odot}\,$ Essential Matlab Model for performance optimization
 - Noise
 - Sensitivity
 - Peaking Time Delay
- Parasitic Capacitance at CSPremp Output
 - $_{\odot}\,$ To guarantee a good conversion speed

- Channel Block Scheme
- Charge Sensitive Preamplifier $\leftarrow \leftarrow \leftarrow$
- Differential Amplifiers
- Wilkinson ADC
- Measurements Summary
- Conclusion

ASDv4 Charge Sensitive Preamplifier

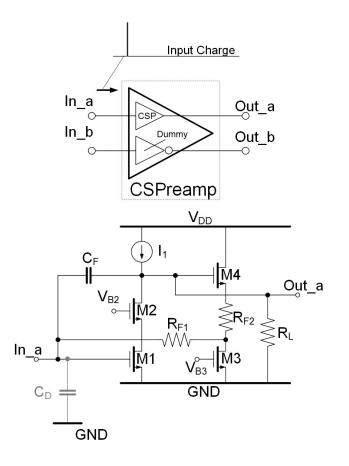

- Pseudo-Differential Structure
 - 2 identical Charge Sensitive Amplifiers
 - CSPreamp
 - CSPreamp Dummy
- Feedback Components:
 - $\begin{array}{c} \circ \ C_{F} \\ \circ \ R_{F} = R_{F1} + R_{F2} \end{array}$

ASDv4 Charge Sensitive Preamplifier

$$T(s) \cong -R_F \cdot \frac{1 - s \frac{C_F}{g_{m1}}}{\left(1 + s C_F R_F \cdot \left(1 + \frac{C_D}{C_F} \left(1 + \frac{R_L}{R_F}\right) \frac{1}{1 + g_{m1} R_L}\right)\right) \cdot \left(1 + s \frac{C_D}{g_{m1}}\right)}$$

- With
 - \circ Detector Capacitance (C_D)
 - \circ Feedback Capacitance (C_F)
 - Feedback Resistor (R_F=R_{F1}+R_{F2})
 - $_{\odot}$ Load Resistor (R_L)
 - DC Loop Gain (g_{m1}·R_L≈400)
 - C_D/C_F≈88

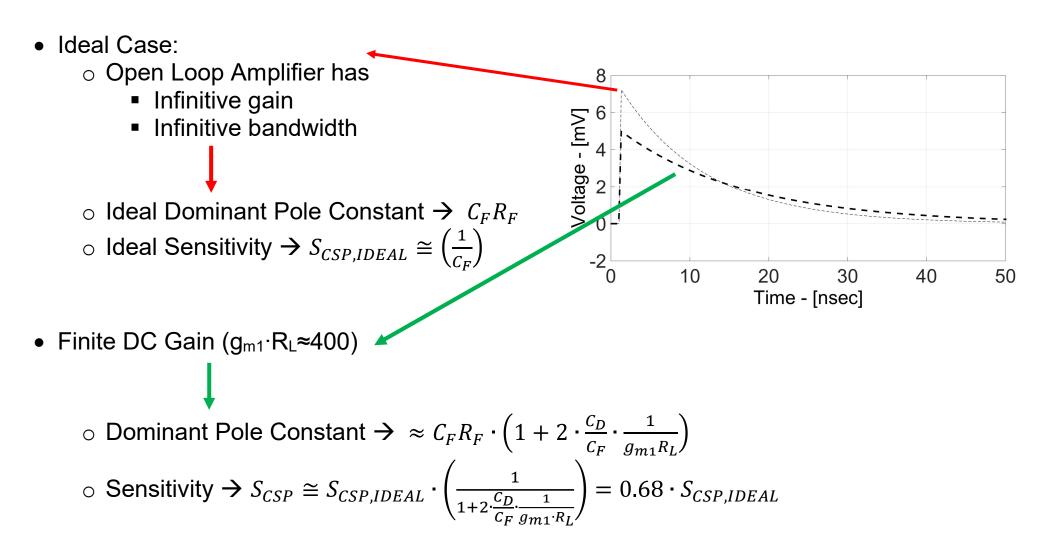
ASDv4 Charge Sensitive Preamplifier


$$T(s) \cong -R_F \cdot \frac{1 - s \frac{C_F}{g_{m_1}}}{\left(1 + s C_F R_F \cdot \left(1 + \frac{C_D}{C_F} \left(1 + \frac{R_L}{R_F}\right) \frac{1}{1 + g_{m_1} R_L}\right)\right) \cdot \left(1 + s \frac{C_D}{g_{m_1}}\right)}$$

• Choosing

$$\circ R_L = R_F$$

$$\circ g_{m_1} >> 1/R_F$$


- High Frequency Zero (≈5GHz)
- CSPreamp Transfer Function can be approximated to:

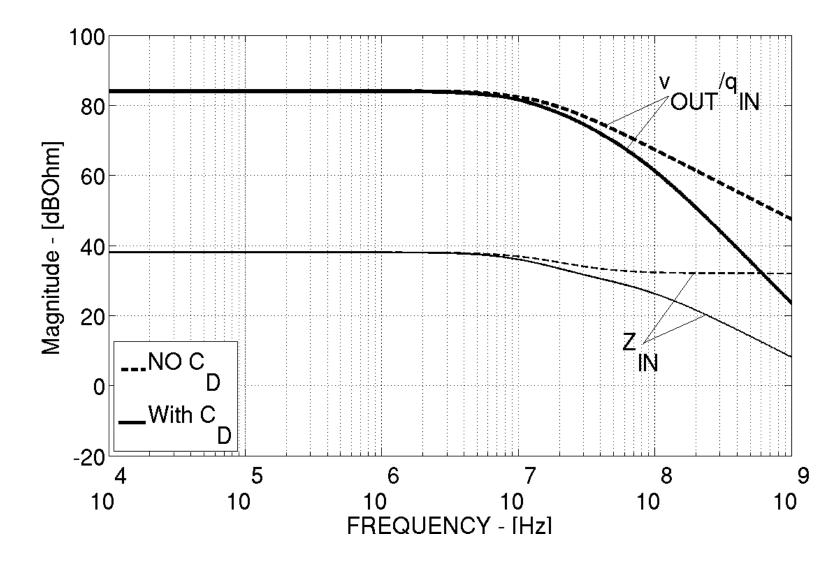
$$T(s) \cong -R_F \cdot \frac{1}{\left(1 + sC_F R_F \cdot \left(1 + 2 \cdot \frac{C_D}{C_F} \cdot \frac{1}{1 + g_{m1} R_L}\right)\right) \cdot \left(1 + s \frac{C_D}{g_{m1}}\right)}$$

ASDv4 CSPreamp Dominant Pole

ASDv4 CSPreamp Second Pole Effect

 Ideal Case: Open Loop Amplifier has 8 IDEAL Infinitive gain _With C_D (and Two poles) Infinitive bandwidth With C_{D} (and One pole) ○ Ideal Dominant Pole Constant $\rightarrow C_F R_F$ ○ Ideal Sensitivity → $S_{CSP,IDEAL} \cong \left(\frac{1}{C_{r}}\right)$ -2₀ 10 20 30 40 50 Time - [nsec] Finite DC Gain (g_{m1}·R_L≈400) ○ Dominant Pole Constant $\rightarrow \approx C_F R_F \cdot \left(1 + 2 \cdot \frac{C_D}{C_F} \cdot \frac{1}{g_{m1}R_L}\right)$ ○ Second Pole Constant → $\approx \frac{g_{m1}}{C_D}$ ○ Sensitivity → $S_{CSP} \cong S_{CSP,IDEAL} \cdot \left(\frac{1}{1+2 \cdot \frac{C_D}{C_E} \cdot \frac{1}{a_{m1} \cdot B_L}}\right) = 0.68 \cdot S_{CSP,IDEAL}$

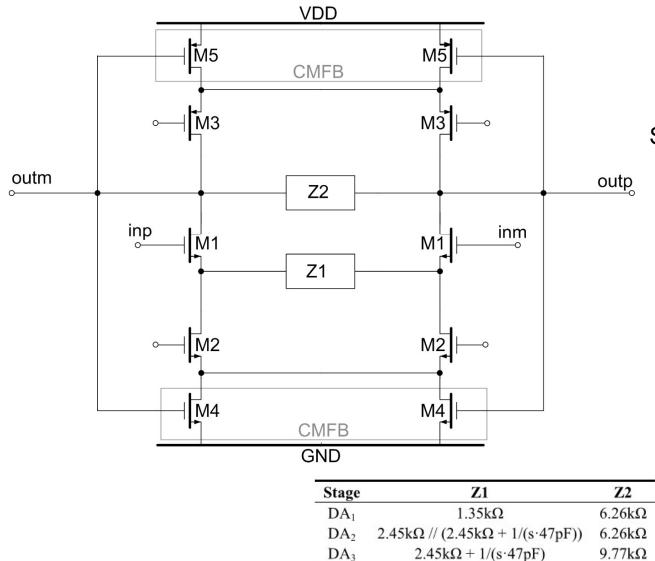
ASDv4 CSPreamp Transient Noise Model



ASDv4 CSPreamp Loop Gain

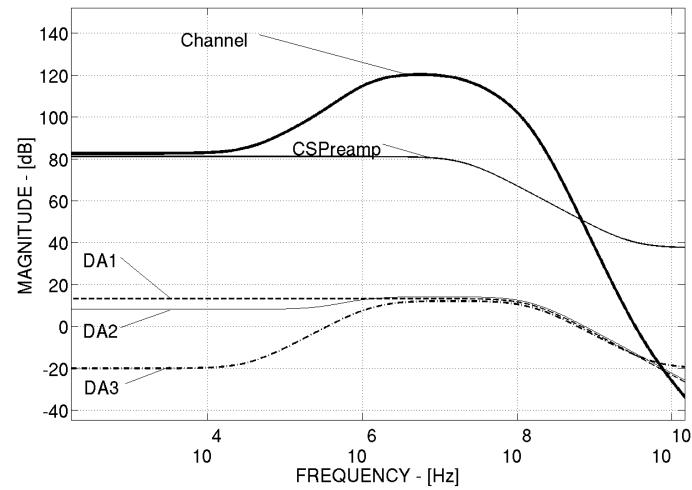
ASDv4 CSPreamp Frequency Responses

CSPreamp Design Parameters Summary


Parameter	Min	Nominal	Max
Current Consumption	1.8mA	2.1mA	2.6mA
Supply-Voltage	3.3V	3.3V	3.3V
Peaking Time Delay (PTD)	8ns	7ns	6.2ns
DC-Gain	$78 dB\Omega$	82dBΩ	$85 dB\Omega$
-3dB Bandwidth	9MHz	11MHz	13.2MHz
Loop-Gain PM	90°	102°	103°
Output Noise	$0.63 mV_{RMS}$	$0.55 mV_{RMS}$	$0.47 mV_{RMS}$
In-Band IRN PSD	5.8nV/√Hz	5nV/√Hz	4nV/√Hz

- Channel Block Scheme
- Charge Sensitive Preamplifier
- Differential Amplifiers $\leftarrow \leftarrow \leftarrow$
- Wilkinson ADC
- Measurements Summary
- Conclusion

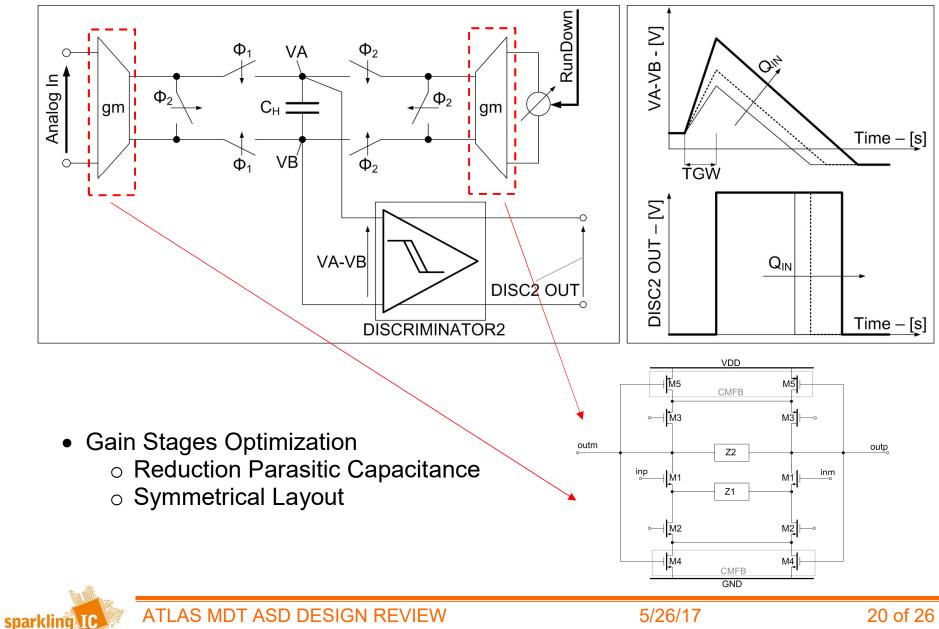
Differential Amplifiers


Smaller CMFB MOS:

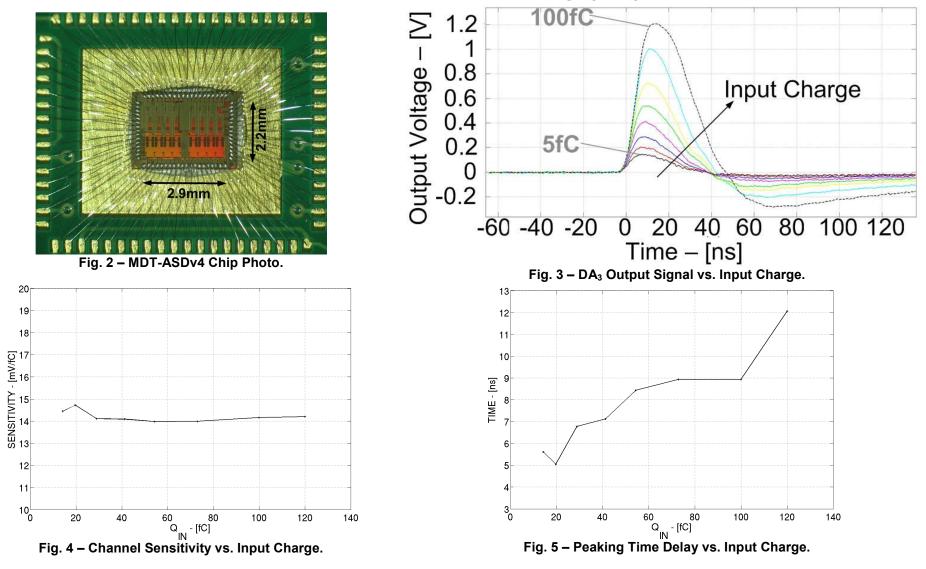
- Reduce CSPreamp Parasitic Capacitance Load
- Manage Peaking Time Delay

sparkling I

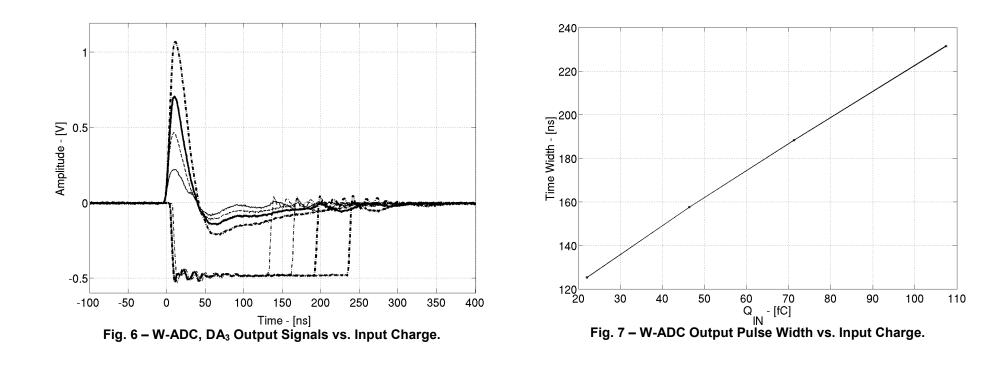
ASDv4 Differential Amplifiers


- 5MHz center frequency
- 30kHz high-pass frequency
- +6dB/octave slope

- Channel Block Scheme
- Charge Sensitive Preamplifier
- Differential Amplifiers
- Wilkinson ADC $\leftarrow \leftarrow \leftarrow$
- Measurements Summary
- Conclusion


ASDv4 **Wilkinson ADC**

- Channel Block Scheme
- Charge Sensitive Preamplifier
- Differential Amplifiers
- Wilkinson ADC
- Measurements Summary ← ← ←
- Conclusion



Measurements Summary (1/2)

ASDv4 Measurements Summary (2/2)

- Channel Block Scheme
- Charge Sensitive Preamplifier
- Differential Amplifiers
- Wilkinson ADC
- Measurements Summary
- Conclusion $\leftarrow \leftarrow \leftarrow$

Conclusion

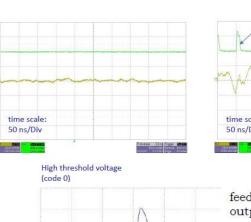
- MDT-ASDv4
 - $_{\odot}\,$ Management of 60pF-C_D
 - $\,\circ\,$ Accurate q_IN-to-V conversion
 - \circ Maximum Peaking Time Delay → 12ns
 - Linear V-to-T conversion
 - \circ Area of 6.38mm²

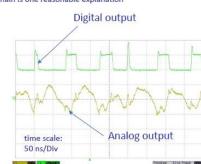
Total Current Consumption	162mA	
Channel ¹ Current Consumption	18.7mA*	
Channel ² Current Consumption	12.56mA	
Total Power Consumption	535mW	
@3.3V of Supply Voltage	555000	
Channel ¹ Power Consumption	61.9mW	
@3.3V of Supply Voltage		
Channel ² Power Consumption	41.44mW	
@3.3V of Supply Voltage		
* 32.7% LVDS		
21% CSP		
20.2% Wilkinson A	DC	
16% DAi _{i=1,2,3,4} ch	ain	
6.5% DISC1		

BLOCK	PIN NAME	DESCRIPTION	ТҮРЕ	#	I/O INTERFACE
	SCLK	Clock Line	Digital In	1	Vpulse Generator
JTAG Serial Interface 6 PADs	SIN	Load Control Line	Digital In	1	Vbit Generator
	SDOWN	Down Control Line	Digital In	1	Vpulse Generator
	SHIFT	Shift Control Line	Digital In	1	Vpulse Generator
	SLOAD	Data Line	Digital In	1	Vpulse Generator
	SOUT	Data Line	Digital Out	1	noConn Istance
MDT-ASD V4 Channel 32 PADs	<ina0:ina7></ina0:ina7>	Positive Channel Input	Analog In	8	1 nF Cap or Current Gen erator in parallel with 60 pF Cap
	<inb0:inb7></inb0:inb7>	Negative Channel Input	Analog In	8	470 pF Cap
	<outa0:outa7></outa0:outa7>	Positive Channel Output	Analog Out	8	Input 'A' LVDS Termina tion
	<outb0:outb7></outb0:outb7>	Negative Channel Output	Analog Out	8	Input 'B' LVDS Termina tion
Channel#7 Buffer 2 PADs	anaa	DA _{30a} of Channel#7	Analog Out	1	1 pF Cap
	anab	DA _{3ob} of Channel#7	Analog Out	1	1 pF Cap
Current Channels Generator 1 PAD	IBIAS_10µA	Current Generator	Analog In	1	Current Generator o 10 μA±5%
Supplies 29 PADs	<vdd1:vddq></vdd1:vddq>	Supply Voltage	Analog In	10	DC-Voltage Generator o 3.3 V± 5 %
	<sub1:subq></sub1:subq>	Ground Voltage	Analog In	7	DC-Voltage Generator o 0 V
	<gnd1:gndq></gnd1:gndq>	Ground Voltage	Analog In	12	DC-Voltage Generator o 0 V

Fig. 8 – MDT-ASDv4 Pin Table (70 Pins).

¹ Including CSP+DA1+DA2+DA3+DA4+DISC1+WILKINSON ADC+MUX+LVDS ² Including CSP+DA1+DA2+DA3+DA4+DISC1+WILKINSON ADC


5/26/17


Conclusion – Measurements Issues

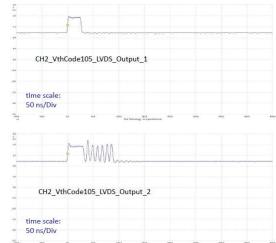
- 1. Substrate Noise
- 2. Channel Mismatch

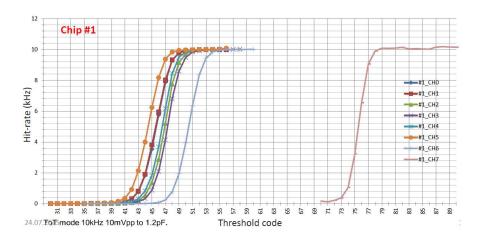
3. Smaller Deadtime Range

- \succ No input signal, programmable board connected to set different threshold voltage values
- Baseline noise impact, which should have only influenced the comparison result at the output of DISC1, now seems to also affect the previous stages the amplifier chain, and the corresponding effect can be observed at the analog buffer's output
- > Possible backward coupling from DISC1 to the analog chain is one reasonable explanation

Low threshold voltage (code 105)

feedback of discr. output to input of preamp (~35 mV)




show the LVDS output of a CH2 in ToT mode, HystCode=0, VthCode=105 (-43mV), it may cause oscillations. There is a kind of "stable oscillating" threshold. After reaching this threshold. the output starts to oscillate (here around code 107-108). Interesting thing is that to stop oscillation the threshold has to be pulled back very far, far

more from a level when it start to

happen.

25.07.2015

5/26/17