ATLAS MDT ASD_V6

Report no. 7 Design Review – ASDv4 – ASDv5

May 29th, 2017

Federica Resta Marcello De Matteis

andrea.baschirotto@sparklingic.com

DESIGN REVIEW Outline

- ASDv4 Fixing Activities
 - \circ Substrate Noise
 - o Channel Mismatch
 - \circ Deadtime
- ASDv5 Issues
 - Jtag Serial Data Interface
 - $\circ\,$ Integration Gate
- New CSPreamp

DESIGN REVIEW Outline

- ASDv4 Fixing Activities
 - \circ Substrate Noise $\leftarrow \leftarrow \leftarrow$
 - o Channel Mismatch
 - \circ Deadtime
- ASDv5 Issues
 - Jtag Serial Data Interface
 - $\circ\,$ Integration Gate
- New CSPreamp

Substrate Noise Introduction

- Digital signals reach 3.3V
 - Substrate more sensible
 - Difficult SE structures optimization to improve noise rejection

Substrate Noise Adopted Approaches

- Schematic Level
 - Replace SE CSPreamp (as in MDT-ASD User Manual 2002-03)

with FD CSPreamp

- Layout Level
 - Supplies/Grounds Isolation
 - Routing Improvement

Substrate Noise Schematic Approach

- Schematic Level
 - $\circ\,$ Replace SE CSPreamp with FD CSPreamp

Substrate Noise Supply Noise Rejection

Fig. 3 – Comparison of v_{OUT,CSPreamp}/v_{DD} Frequency Responses.

Substrate Noise Layout Approach (1/2)

- Layout Level
 - Supplies/Grounds Isolation
 - Guard Rings and BFMOAT

Figure 19. Substrate Regions Defined by the SXCUT Drawing Level and Named by the SXCUT Label

ATLAS MDT ASD V6

5/26/17

Substrate Noise Layout Approach (2/2)

- Layout Level
 - Supplies/Grounds Isolation
 - <u>Guard Rings</u> and <u>BFMOAT</u>
 - \circ Routing Improvement

Substrate Noise

Intermediate Result

PEX Transient Simulation with an improved version of the new CSPreamp

 Better sensitivity (~0.94mV/fC) and ENC (~0.85fC)

Substrate Noise PEX Transient Noise Simulation Results

Fig. 5 - CSPreamp Output @ Q_{IN}=5fC

• The effort for disturbance mitigation is vanished by noise presence

Substrate Noise

CSPreamp Performance Summary

Specification@CSPreamp Output	MDT-ASD User Manual 2002-03	ASD_V4	ASD_V5
Sensitivity	0.93mV/fC	0.74mV/fC	0.94mV/fC
ENC	6000 e ⁻ rms → 0.96fC	0.86fC	0.85fC
RMS noise	0.89mV _{RMS}	$0.64 mV_{RMS}$	0.8mV _{RMS}
Peaking Time Delay @ CSPreamp Output	-	8.8ns	8.7ns
CSPreamp Voltage Peak @Q _{IN} =5fC	4.65mV	3.7mV	4.7mV
-3dB Bandwidth	11.94MHz	11MHz	16.7MHz

ASD_Vs_4

peak amplitude 300 mV, peaking time ~ 12 ns ASD_Vs_5

DESIGN REVIEW Outline

- ASDv4 Fixing Activities
 - \circ Substrate Noise
 - \circ Channel Mismatch $\leftarrow \leftarrow \leftarrow$
 - \circ Deadtime
- ASDv5 Issues
 - o Jtag Serial Data Interface
 - $\circ\,$ Integration Gate
- New CSPreamp

CHANNEL Mismatch Introduction

- CH7 affected by buffer connection
 - $_{\odot}$ Longer and more thick wires
 - Parasitic capacitances (≈1.5pF) greater than gate capacitances
- DA3 output:
 - $_{\odot}$ Amplitude reduction of 1.7 factor
 - $_{\odot}\,$ Peaking Time Delay increment of 1.3 factor
 - Noise reduction of 1.47 factor
- Measurements
 - $V_{TH_{MIN}}$ ratio → around 1.4
 - \circ V_{TH_MAX} ratio → around 1.65

CHANNEL Mismatch Solution

- Layout Modification
 - Parasitic capacitances decrement
 - Closer DA3 and Buffer
 - Shorter wires
 - Less width wires
- **Switches** to disconnect the buffer
- Schematic Transient simulations

CHANNEL Mismatch PVT Schematic Transient Results

		CHANNEL V5			
Parameters	Units	Nominal	PVT	PVT	
		Nominal	min	max	
Peak Voltage Preamp	mV	5.042	4.43	5.291	
Peaking Time Preamp	ns	7.68	6.448	9.945	
Peak Voltage DA1	mV	12.66	9.936	15.17	
Peaking Time DA1	ns	9.252	7.905	11.61	
Peak Voltage DA2	mV	38.57	27.61	49.4	
Peaking Time DA2	ns	10.18	8.751	12.64	
Peak Voltage DA3	mV	86.3	58.23	116.1	
Peaking Time DA3	ns	12.79	11.13	15.24	
Peak Voltage Buffer Input	mV	86.57	58.53	116.3	
Peaking Time Buffer Input	ns	12.79	11.13	15.41	
Peak Voltage Buffer Output	mV	43.42	21.48	64.79	
Peaking Time Buffer Output	ns	13.89	11.84	16.71	

• Including switches to disconnect the buffer

CHANNEL Mismatch Buffer ON – DA3 Signal

- Transient Simulations
 - \circ With Buffer
 - Without Buffer
- Buffer ON
- Minimum Input Charge
- Calibre Extracted
- DA3 Output Signals

	Peak Voltage	Peaking Time
DA3 Output of CH0-CH6	84mV	13.4ns
DA3 Output of CH7	78.36mV	14.5ns
Buffer Input	78.55mV	14.5ns
Buffer Output	37.9mV	16.4ns

CHANNEL Mismatch Buffer OFF – DA3 Signal

- Transient Simulations

 With Buffer
 - Without Buffer
- Buffer OFF
- Minimum Input Charge
- Calibre Extracted
- DA3 Output Signals

	Peak Voltage	Peaking Time
DA3 Output of CH0-CH7	84 mV	13.4 ns
Buffer Input	0 mV	-
Buffer Output	0 mV	-

CHANNEL Mismatch MPI Measurements

 The spread of internal offset of channels is extremely low – 4mV. Channel 7 is in range with other channels.

3. Enabling analog output on channel 7 adds very little load - effectively shifting threshold by 5mV

ATLAS MDT ASD_V6

DESIGN REVIEW Outline

- ASDv4 Fixing Activities
 - \circ Substrate Noise
 - o Channel Mismatch
 - \circ Deadtime $\leftarrow \leftarrow \leftarrow$
- ASDv5 Issues
 - o Jtag Serial Data Interface
 - $\circ\,$ Integration Gate
- New CSPreamp

DeadTime Issue Introduction

- DeadTime is proportional to $\Delta V=vDTP-vDTN=R$ •I
 - $\circ \rightarrow$ proportional to a current (I)
- Each Channel has a Phase Generator Block with 2 voltages coming from Common Block (vDTP and vDTN)
- The Distance between each Channel and Common Block is variable
 - $\circ\,$ Mismatch between two different channels in terms of
 - Current
 - DeadTime

ATLAS MDT ASD_V6

DeadTime Issue

Solution – SCH. Simulation

 LOCAL DeadTime Generati 	on
---	----

PARAMETER	VALUES
Hysteresys	0
Threshold2	7
Threshold1	118 → -19mV
Integration Gate	8
Rundown Code	4
DeadTime	0 - 7
Input Charge	5fC
Period Input Charge	400ns

Word Codes	Values
0	13.77ns
1	148.1ns
2	263.4ns
3	372.8ns
4	479ns
5	582.7ns
6	684.5ns
7	784.9ns

DeadTime Issue PT Simulations

PT simulations with

- \circ Process variation (ss, sf, fs, ff, tt)
- Temperature variation (-40°, 27°, 120°)
- $\circ\,$ Maximum and Minimum DeadTime Codes

Word	Nominal	Process / Temperature		
Codes	Values	Min. Values	Max. Values	
0	13.77ns	9.609ns	20.19ns	
1	148.1ns	-	-	
2	263.4ns	-	-	
3	372.8ns	-	-	
4	479ns	-	-	
5	582.7ns	-	-	
6	684.5ns	-	-	
7	784.9ns	732.3ns	839.2ns	

DeadTime Issue MPI Measurements

Dead time vs. dead time code: fixed

5/26/17

DESIGN REVIEW Outline

- ASDv4 Fixing Activities
 - \circ Substrate Noise
 - o Channel Mismatch
 - \circ Deadtime
- ASDv5 Issues
 - \circ Jtag Serial Data Interface $\leftarrow \leftarrow \leftarrow$
 - Integration Gate
- New CSPreamp

JTAG Serial Data Interface

Version5 Issues

- Hysteresis bit setting
 - $\,\circ\,$ Once '1111' word code is set
 - Problem with the reset to '0000'
 - Chip Switch OFF is necessary

- Same Interface Cells for each Bit
- DACs interface optimization

CASE1					
INPUT WORD	OUTPUT WORD				
CODE	CODE				
1111	1111 😊				
0000	1111 🛛				
0110	1111 🛛				
1111	1111 😊				
0000	1111 🛛				
0110	11118				

CASE2					
INPUT WORD	OUTPUT WORD				
CODE	CODE				
0000	0000 😳				
0000	0001 🛞				
0110	0111 😕				
1111	1111 😊				
0000	1111 🛛				
0110	1111 😕				

JTAG Serial Data Interface

Schematic Simulation Results (1/2)

• JTAG Interface V6

- $_{\odot}\,$ SOUT signal is delayed SIN one
- $_{\odot}$ Input and Ouput signals are the same ${}^{\bigodot}$

JTAG Serial Data Interface

Schematic Simulation Results (2/2)

- 10 different word codes (shown in next slide) have been used as input
 - All words are correct
 - $_{\odot}\,$ All words are received correctly by DACs
 - $\,\circ\,$ Fan-out problem for hysteresis bits have been solved
 - Problem resulting in the replacement of the custom interfaces with standard ones
 - \rightarrow Input of hysteresis block has been optimitazed

JTAG Serial Data Interface Transmitted Word Codes

#	[b0:b15]	[b16]	[b17:b19]	[b20:b23]	[b24:b26]	[b27:b30]	[b31:b33]	[b34:b41]	[b42:b54]
1	000000000000000000000000000000000000000	0	000	0000	000	0000	000	00000000	000000000000000000000000000000000000000
2	010101010101010101	0	101	0101	010	1010	101	01010101	0101010101010
3	000000000000000000000000000000000000000	0	000	0000	000	0000	000	0000000	000000000000000000000000000000000000000
4	000000000000000000000000000000000000000	0	111	0111	110	1111	111	01111011	000000000100
5	000000000000000000000000000000000000000	0	111	0111	110	1001	111	01111011	000000000100
6	000000000000000000000000000000000000000	0	111	0111	110	0110	111	01111011	000000000100
7	000000000000000000000000000000000000000	0	111	0111	110	0000	111	01111011	000000000100
8	000000000000000000000000000000000000000	0	111	0111	110	1010	111	01111011	000000000100
9	000000000000000000000000000000000000000	0	111	0111	110	1000	111	01111011	000000000100
10	000000000000000000000000000000000000000	0	111	0111	110	0001	111	01111011	000000000100
	↓ Channel Mode (CH0-CH7)	↓ Chip Mode	↓ DeadTime	↓ Wilkinson ADC Integration Gate	↓ Wilkinson ADC Rundown Current	↓ Hysteresis DAC (DISC1)	↓ Wilkinson ADC Threshold DAC (DISC2)	↓ Main Threshold DAC (DISC1)	↓ No Used

- Correct trasmission of all the word codes
- Hysteresis bits NOT AFFECT by '1111' setting

DESIGN REVIEW Outline

- ASDv4 Fixing Activities
 - \circ Substrate Noise
 - o Channel Mismatch
 - \circ Deadtime
- ASDv5 Issues
 - Jtag Serial Data Interface
 - \circ Integration Gate $\leftarrow \leftarrow \leftarrow$
- New CSPreamp

IntegrationGate Uniformity Version5 Issue

- One variable resistor shared between the 8 Channels
- Integration gate width generation through a current $I_{\text{INT}_\text{GATE}}$

IntegrationGate Uniformity Version5 Solution

- One variable resistor for each channel has been inserted

 Local Integration Gate *generation*
- Integration gate width generation through a current I_{INT_GATE} $I_{INT_GATE} = \frac{vGWP-vGWN}{P}$

RINT GATE

Fig. 7 - Integration Gate Voltage generator symbol (on the left) and schematic (on the rigth).

- 16 transient post-layout simulations
- User MDT Manual specification:
 - \circ Range: 8ns 45ns
 - LSB: ~2.5ns
 - Resolution: 4 bits

Corner	dintgate0	dintgate1	dintgate2	dintgate3	PEX_integration_width
C1_0	0	0	0	0	8.015n
C1_1	1	0	0	0	11.03n
C1_2	0	1	0	0	13.86n
C1_3	1	1	0	0	16.53n
C1_4	0	0	1	0	19.17n
C1_5	1	0	1	0	21.67n
C1_6	0	1	1	0	24.17n
C1_7	1	1	1	0	26.59n
C1_8	0	0	0	1	29.08n
C1_9	1	0	0	1	31.32n
C1_10	0	1	0	1	33.75n
C1_11	1	1	0	1	36.06n
C1_12	0	0	1	1	38.45n
C1_13	1	0	1	1	40.69n
C1_14	0	1	1	1	42.99n
C1_15	1	1	1	1	45.21n

DESIGN REVIEW Outline

- ASDv4 Fixing Activities
 - \circ Substrate Noise
 - o Channel Mismatch
 - \circ Deadtime
- ASDv5 Issues
 - Jtag Serial Data Interface
 - \circ Integration Gate $\leftarrow \leftarrow \leftarrow$
- New CSPreamp

New CSPreamp CSPreamp_V5 Cadence Scheme

New CSPreamp CSPreamp_V5 Scheme (1/2)

Fig. 9 – CSPreamp Fully Differential Transistor Level Scheme.

New CSPreamp CSPreamp_V5 Scheme (2/2)

MOS	W/L	g _m [mA/V]	r _{DS} [kΩ]
M1 _A	2mm/400nm	34.36	1.03
M1 _B	2mm/400nm	33.36	0.978
M2 _A	150µm/400nm	17.38	3.14
M2 _B	150µm/400nm	16.74	2
M3	928µm/3µm	18.41	505.7
M4	80µm/500nm	1.187	118
M5	16µm/3µm	0.348	1.22

Fig. 10 – CSPreamp Transistor Level Scheme.

- Current Consumption \rightarrow 3.94mA
- Power Consumption @ 3.3V of Supply Voltage → 13mW
- DC Open Loop Gain

 $\circ 20 \cdot \log_{10} \left(gm_{M1_B} \cdot R_{OUT} \right) = 20 \cdot \log_{10} \left(gm_{M1_B} \cdot \left(R_L \parallel R_{M2_B - M1_B} \parallel R_{I_B} \right) \right) \cong 50 dB$

o With

•
$$R_L = 20k\Omega$$

•
$$R_{M2_B-M1_B} = gm_{M2_B} \cdot r_{DS_{M2B}} \cdot r_{DS_{M1B}} \cong 32.7k\Omega$$

•
$$R_{I_B} \cong 46.3 \mathrm{k}\Omega$$

New CSPreamp CSPreamp_V5 Responses

Fig. 11 – v_{OUT}/q_{IN} and Z_{IN} (Input Impedance) Frequency Responses.

New CSPreamp CSPreamp_V5 Loop Gain Frequency Response

Fig. 12 – CSPreamp Loop Gain Frequency Response.

New CSPreamp CSPreamp_V5 PSRR

Fig. 13 – CSPreamp and Supply Frequency Responses, Power Supply Rejection Ratio.

New CSPreamp Frequency Response of Supply Signal Comparison

THANKS FOR THE ATTENTION!

BACK-UP SLIDES Outline

- Differential Amplifiers $\leftarrow \leftarrow \leftarrow$
 - $_{\odot}\,$ Generic Scheme
 - o DA1
 - DA2
 - DA3
 - Chain Frequency Responses
 - Transient Signals
 - \circ Noise Performance
- ToT Mode (DISC1 Output)
- ADC Mode (DISC2 Output)
- Layout Comparison
- Power Consumption Comparison

DIFFERENTIAL AMPLIFIERS Generic Differential Amplifiers Scheme

DA₁ Scheme

MOS	W/L	g _m [mA/V]	r _{DS} [kΩ]	
M1	30µm/400nm	2.987	10.58	
M2	30µm/900nm	1.897	41.74	
M3	90µm/900nm	1.657	174.33	
M4	15µm/400nm	0.296	0.133	
M5	45µm/400nm	0.108	0.114	

IMPEDANCEs	VALUEs
Z1	1.34kΩ
Z2	6.26kΩ

CURRENTs	VALUEs
 ₁ = ₂	293.5µA

- Current Consumption \rightarrow 0.746mA
- Power Consumption @ 3.3V of Supply Voltage → 2.46mW

DA₂ Scheme

Fig. 16 – DA₂ Transistor Level Scheme.

Fig. 17 – Z1 Impedance Scheme of DA2 Block.

- Current Consumption \rightarrow 0.748mA
- Power Consumption @ 3.3V of Supply Voltage → 2.47mW

sparklin	g IC

ATLAS MDT ASD_V6

MOS	١٨//١	g m	r _{DS}
NOS	V V / L	[mA/V]	[kΩ]
M1	90µm/400nm	4.477	8.772
M2	30µm/900nm	1.898	40.13
M3	90µm/900nm	1.659	173
M4	15µm/400nm	0.288	0.130
M5	45µm/400nm	0.111	0.114

IMPEDANCEs	VALUEs
Z1	See Fig. 17
Z2	6.26kΩ

CURRENTs	VALUEs		
$ _1 = _2$	294.4µA		

DA₃ Scheme

Fig. 18 – DA₃ Transistor Level Scheme.

MO	S	W/L	g _m [mA/V]	r _{DS} [kΩ]
M1		30µm/400nm	2.995	12.13
M2	2	30µm/900nm	1.89	35.93
M3	3	90µm/900nm	1.655	174.3
M4	ŀ	15µm/400nm	0.288	0.130
M5	5	45µm/400nm	0.110	0.115

IMPEDANCEs	VALUEs	
Z1	See Fig. 19	
Z2	9.47kΩ	

CURRENTs	VALUEs
I ₁ =I ₂	293.1µA

- Current Consumption \rightarrow 0.745mA
- Power Consumption @ 3.3V of Supply Voltage → 2.45mW

ATLAS MDT ASD_V6

5/26/17

Chain Frequency Responses

Fig. 20 – Channel Frequency Responses.

- Full Chain Frequency Response:
 - Peak of 76dB @ 5MHz
 - $\,\circ\,$ Bandwidth from 1.4MHz to 17.4MHz

DIFFERENTIAL AMPLIFIERS Transient Signals

Fig. 21 – Output Signals from Transient Simulation.

DIFFERENTIAL AMPLIFIERS DA₃ Output for Different Input Charges

Fig. 24 – Output Signals from Transient Simulation.

ATLAS MDT ASD_V6

5/26/17

DIFFERENTIAL AMPLIFIERS DA₃ Peak Voltage

- Sensitivity @ DA3 Output \rightarrow about 14mV/fC
- Peaking Time Delay $\rightarrow \leq 13$ ns

DIFFERENTIAL AMPLIFIERS Chain Noise Power Spectral Density

- Noise at DA3 Output
- Integrated Noise \rightarrow 10.5mV_{RMS}

BACK-UP SLIDES Outline

- Differential Amplifiers
 - \circ Generic Scheme
 - \circ DA1
 - \circ DA2
 - \circ DA3
 - Chain Frequency Responses
 - Transient Signals
 - \circ Noise Performance
- ToT Mode (DISC1 Output) $\leftarrow \leftarrow \leftarrow$
- ADC Mode (DISC2 Output)
- Layout Comparison
- Power Consumption Comparison

ToT MODE DISC1

Fig. 26 - Dicriminator1 Cadence Scheme.

Fig. 27 - Dicriminator1 Transistor Level Scheme.

- Mirror Input Stage
- Static Current Consumption \rightarrow about 1.4mA
- Local Hysteresis Generation:
 - $\circ~20\mu A$ of LSB
 - $\circ~300\mu A$ of Range
 - 4bit Resolution

5/26/17

55 of 71

ATLAS MDT ASD_V6

BACK-UP SLIDES Outline

- Differential Amplifiers
 - \circ Generic Scheme
 - \circ DA1
 - DA2
 - \circ DA3
 - Chain Frequency Responses
 - Transient Signals
 - Noise Performance
- ToT Mode (DISC1 Output)
- ADC Mode (DISC2 Output) $\leftarrow \leftarrow \leftarrow$
- Layout Comparison

Power Consumption ComparisonADC MODE Wilkinson ADC Operating Principle

sparkling TC

Wilkinson ADC Operating Principle

- Local Generation of Programmable Parameters:
 - Rundown Current (in Wilkinson Cell \rightarrow ASDv4)
 - Integration Gate Width (in Wilkinson Phase Gen \rightarrow ASDv6)
 - \circ DeadTime (in Wilkinson Phase Gen→ASDv5)
- Channel Matching Improvement

Rundown Local Generation

Wilkinson ADC Signals (q_{IN} range = 5fC – 105fC)

- q_{IN} range: 5fC 105fC
- Step Size:10fC

ATLAS MDT ASD_V6

5/26/17

ADC MODE Wilkinson ADC Characteristic

- q_{IN_MIN}=5fC, q_{IN_MAX}=100fC
- Threshold1 Voltage \rightarrow 19mV
- Threshold2 Voltage → -31mV

BACK-UP SLIDES Outline

- Differential Amplifiers
 - \circ Generic Scheme
 - \circ DA1
 - \circ DA2
 - \circ DA3
 - Chain Frequency Responses
 - Transient Signals
 - \circ Noise Performance
- ToT Mode (DISC1 Output)
- ADC Mode (DISC2 Output)
- Layout Comparison $\leftarrow \leftarrow \leftarrow$
- Power Consumption Comparison

LAYOUT

Version4

• Area → 6.38mm²

Version5

3.38mm

- Area → 7.64mm²
- +19.7% due to BFMOAT introduction and supplies separation

LAYOUT

Pin List V4 – 70 Pins

Pin List V5 – 74 Pins

BLOCK	PIN NAME	DESCRIPTION	ТҮРЕ	#	I/O INTERFACE
	SCLK	Clock Line	Digital In	1	Vpulse Generator
JTAG	SIN	Load Control Line	Digital In	1	Vbit Generator
Serial	SDOWN	Down Control Line	Digital In	1	Vpulse Generator
Interface	SHIFT	Shift Control Line	Digital In	1	Vpulse Generator
6 PADs	SLOAD	Data Line	Digital In	1	Vpulse Generator
8	SOUT	Data Line	Digital Out	1	noConn Istance
MDT-ASD	<ina0:ina7></ina0:ina7>	Positive Channel Input	Analog In	8	1 nF Cap or Current Gen- erator in parallel with 60 pF Cap
32 PADs	<inb0:inb7></inb0:inb7>	Negative Channel Input	Analog In	8	470 pF Cap
2	<outa0:outa7></outa0:outa7>	Positive Channel Output	Analog Out	8	Input 'A' LVDS Termina- tion
3	<outb0:outb7></outb0:outb7>	Negative Channel Output	Analog Out	8	Input 'B' LVDS Termina- tion
Channel#7	anaa	DA _{30a} of Channel#7	Analog Out	1	1 pF Cap
2 PADs	anab	DA _{3ob} of Channel#7	Analog Out	1	1 pF Cap
Current Channels Generator 1 PAD	IBIAS_10µA	Current Generator	Analog In	1	Current Generator of $10\mu A \pm 5\%$
Supplies 29 PADs	<vdd1:vddq></vdd1:vddq>	Supply Voltage	Analog In	10	DC-Voltage Generator of 3.3 V±5%
	<sub1:subq></sub1:subq>	Ground Voltage	Analog In	7	DC-Voltage Generator of 0 V
	<gnd1:gndq></gnd1:gndq>	Ground Voltage	Analog In	12	DC-Voltage Generator of 0 V

BLOCK	PIN NAME	DESCRIPTION	TYPE	#	VO INTERFACE	
	SCLK	Clock Line	Digital In	1	Vpulse Generator	
	SIN	Load Control Line	Digital In	1	Vbit Generator	
JTAG	SDOWN	Down Control Line	Digital In	1	Vpulse Generator	
Serial	SHIFT	Shift Control Line	Digital In	1	Vpulse Generator	
Interface	SLOAD	Data Line	Digital In	1	Vpulse Generator	
8 PADs	SOUT	Data Line	Digital Out	1	noConn Istance	
3	VDD_JTAG	JTAG Supply Voltage	Analog In	1	DC-Voltage Generator of 3.3V±5%	
	GND_JTAG	JTAG Ground Voltage	Analog In	1	DC-Voltage Generator of 0 V	
	<ina0:ina7></ina0:ina7>	Positive Channel Input	Analog In	8	1 nF Cap or Current Gener- ator in parallel with 60 pF Cap	
	<inb0:inb7></inb0:inb7>	Negative Channel Input	Analog In	8	470 pF Cap	
MDTASD	<outa0:outa7></outa0:outa7>	Positive Channel Output	Analog Out	8	Input 'A' LVDS Termina- tion	
V4 Channel	<outb0:outb7></outb0:outb7>	Negative Channel Output	Analog Out	8	Input'B' IVDS Termination	
55 PADs	VDD_1	CSPreamp Supply Voltage	Analog In	5	DC-Voltage Generator of 3.3V±5%	
	GND_1	CSPreamp Ground Voltage	Analog In	4	DC-Voltage Generator of 0 V	
	VDD_2	Analog Section Supply Voltage	Analog In	2	DC-Voltage Generator of 3.3V±5%	
	GND_2	Analog Section Ground Voltage	Analog In	2	DC-Voltage Generator of 0 V	
	VDD_3	Digital Supply Voltage	Analog In	2	DC-Voltage Generator of 3.3V±5%	
	GND_3	Digital Ground Voltage	Analog In	2	DC-Voltage Generator of 0 V	
	VDD_A	MUX-IV DS Supply Voltage	Analog In	2	DC-Voltage Generator of 3.3V±5%	
	VSS_A	MUX-LV DS Ground Voltage	Analog In	2	DC-Voltage Generator of 0V	
	VDD_X	Common Block Supply Voltage	Analog In	1	DC-Voltage Generator of 3.3V±5%	
	GND_X	Common Block Ground Voltage	Analog In	1	DC-Voltage Generator of 0 V	
	anaa	DA _{3ce} of Channel#7	Analog Out	1	1 pF Cap	
Buffer 2 PA De	anab	DA _{3ob} of Channel#7	Analog Out	1	1 pF Cap	
ZTADS	VDD_BUFF	Buffer Supply Voltage	Analog In	1	DC-Voltage Generator of 3.3V±5%	
	VDD_BUFF	Buffer Ground Voltage	Analog In	1	DC-Voltage Generator of 0 V	
	BIT_BUFF	ON bit	Digital In	1	Vpulse Generator	
External Bias 3 PA Ds	Ib_10 u	Current Generator	Analog In	1	Current Generator of 10 µA±5%	
	VDD_BIAS	External Bias Supply Voltage	Analog In	1	DC-Voltage Generator of 3.3V±5%	
	GND_BIAS	External Bias Ground Voltage	Analog In	1	DC-Voltage Generator of 0V	
Supplies 3 PA Ds	VDD_PAD	Padring Supply Voltage	Analog In	1	DC-Voltage Generator of 3.3V±5%	
	GND_PAD	Padring Ground Voltage	Analog In	1	DC-Voltage Generator of 0 V	
	GP	Padring Ground Plane	Analog In	1	DC-Voltage Generator of 0 V	

5/26/17

BACK-UP SLIDES Outline

- Differential Amplifiers
 - \circ Generic Scheme
 - \circ DA1
 - \circ DA2
 - **DA3**
 - Chain Frequency Responses
 - Transient Signals
 - \circ Noise Performance
- ToT Mode (DISC1 Output)
- ADC Mode (DISC2 Output)
- Layout Comparison
- Power Consumption Comparison $\leftarrow \leftarrow \leftarrow$

POWER CONSUMPTION

Version 4

Name	Description	Value		
IVDD1	CSP	8x3.9mA=31.2mA		
	External Bias	90.77µA	31.3MA	
	Channel Bias	8x0.653mA=5.22mA		
	Hysteresis Block	8x82.05µA=0.656mA		
	DA1	8x0.744mA=5.95mA		
	DA2	8x0.746mA=5.97mA	42.2mA	
	DA3	8x0.743mA=5.94mA		
	DA4	8x0.739mA=5.91mA		
	Wilkinson	8x1.57mA=12.56mA		
	DISC1	8x1.22mA=9.76mA		
	DISC2	8x1.56mA=12.48mA	27.5mA	
	Wilkinson Phase Gen	8x0.66mA=5.28mA		
	Common Block	1.11mA		
I _{VDD4}	Jtag	45.94nA	1.1mA	
	MUX	8x1.06nA		
l	CH7 Buffer	11.21mA	60.2mA	
IVDDQ	LVDS	8x6.14mA=49.12mA	00.3IIIA	

- Total Current Consumption: 162mA → 535mW @ 3.3V Supply Voltage
- Termination: 100Ω
- Channel Current Consumption $\approx (I_{VDD1}+I_{VDD2}+I_{VDD3})/8+I_{MUX}+I_{LVDS}\approx 18.76$ mA $\rightarrow \rightarrow \rightarrow 61.9$ mW/channel

POWER CONSUMPTION

Version 5

Name	Description	Value	
	I _{VDD1} CSP		
	Channel Bias		
	DA1		
Ivdd2	DA2	28.7mA	
	DA3		
	DA4		
	Hysteresis Block		
	DISC1		
	DISC2	42mA	
	Wilkinson		
	Wilkinson Phase Gen		
IVDDA	I _{VDDA} MUX - LVDS		
	I _{VDDX} Common Block		
IVDD_BUFF	CH7 Buffer	10.57mA	
IVDD_JTAG	Jtag Interface	45.9nA	
IVDD_BIAS External Bias		90.8µA	
IVDD_PAD	Padring	303.3nA	

- Total Current Consumption: 163mA → 538mW @ 3.3V Supply Voltage
- Termination: 100Ω
- Channel Current Consumption = $(I_{VDD1}+I_{VDD2}+I_{VDD3}+I_{VDDA})/8=18.9$ mA

 $\rightarrow \rightarrow \rightarrow 62$ mW/channel

POWER CONSUMPTION

Comparison

	Values			
	ASD2_V4	ASD2_V5	ASD_V6	
Total Current Consumption	162mA	163mA	164mA	
Channel ¹ Current Consumption	18.7mA*	18.9mA*	19.05mA*	
Channel ² Current Consumption	12.56mA	12.76mA	12.91mA	
Total Power Consumption @3.3V of Supply Voltage	535mW	538mW	541mW	
Channel ¹ Power Consumption @3.3V of Supply Voltage	61.9mW	62mW	62.86mW	
Channel ² Power Consumption @3.3V of Supply Voltage	41.44mW	42.10mW	42.6mW	

ASD1 Channel Power Connsumption \rightarrow ~35mA @3.3V of Supply Voltage

* 32.7% LVDS 21% CSP 20.2% Wilkinson ADC 16% DAi_{i=1,2,3,4} chain 6.5% DISC

¹ Including CSP+DA1+DA2+DA3+DA4+DISC1+WILKINSON ADC+MUX+LVDS ² Including CSP+DA1+DA2+DA3+DA4+DISC1+WILKINSON ADC

