MDT-ASD ("Legacy ASD") History, design choices, and motivations John Oliver

Major design work done ~ 1998 – 2001
o John Oliver – Harvard University
o Eric Hazen, Christophe Posch – Boston University
For complete description, see "ATL-MUON 2002-2003

Rev 2.1 10-Sep-2007

ASIC Processes for Muons – A Brief History

- Until 1993, we worked on Muon Spectrometer for SDC (Solenoidal Detector Collaboration) at the Supercollider.
- Worked on bipolar processes with U. Penn Transision Radiation Detector (or was it Straw Tube Tracker?)
- First discussions with ATLAS started in \sim 1995 after demise of SSC
- At the time, HEP community was experimenting with bipolar, biCMOS^[1], and CMOS for detector front ends
- CMOS processes were available in US through MOSIS and prototypes (MPWs) were cheap....very cheap!
- One could build prototype preamps for ~\$5k
- Scale (gate length) was getting smaller by the year $3u \rightarrow 1u \rightarrow 0.5u$
- We started building & testing preamp/shapers using 1u then headed to 0.5u ~ 1997 or so
- Settled on HP 0.5u CMOS through MOSIS
- Process was *epitaxial*, not by our choice, but that's what was available (see following slide)
- Process yielded peaking times ~ 15ns deemed "good enough" for MDT shaping

[1] eg "DMILL"

Transient electric field lines generated in transistors tend to terminate on

- Guard ring structures in bulk processes
- Guard ring structures **and** substrate in epi processes →Dangerous!
- Epi processes were used commercially to prevent transistor "latchup" in inverter and other structures
- Note that these CMOS structures were "simple" at the time, not sophisticated as today's processes → no "trenches" or other fancy stuff!

Parameter	n-channel	p-channel	either	Units
Minimum gate length			0.5	μm
Threshold voltage (typ)	0.76	0.88		V
Kprime	92	26		$\mu A/V^2$
N+ diffusion sheet resistance	2.2	2.2		Ω/sq
Poly sheet resistance (silicided)			2.0	Ω/sq
Poly sheet resistance (silicide blocked)			130	Ω/sq
Gate oxide thickness			100	Å
Gate capacitance			3.5	fF/µm ²
Linear capacitor			2.3	fF/µm ²
Vbkd	11.3	-9.6		V

Table 3. HP 0.5µ CMOS process parameters

Passive components

- a) Resistors: Silicide blocked poly $\rightarrow \sim 12k\Omega$ easy
- b) Capacitors: "Linear" or MIM up to 10pf or more
- c) Capacitors built in two vertically opposite halves to equalize bottom plate strays

Table 2. ASD analog specifications

Input impedance	$Z_{IN} = 120 \Omega$
Noise	$ENC = 6000 e^{-1} rms or \sim 5 primary electrons (pe^{-1})$
Shaping function	bipolar
Shaper peaking time	$t_p = 15 \text{ ns}$
Sensitivity at discriminator	1.65 mV/pe (gas gain 2×10^4) or 8.9 mV/fC (delta pulse into terminated
input	MDT)
Linear range	1.5 V or 900 pe ⁻
Nominal threshold setting	40 mV or 24 pe ⁻ (~ 5 σ_{noise})

<u>Notes</u>

- a) Zin (120 Ω) small compared with Z0 of tube (380 Ω)
- b) Noise dominated by termination

Circuit Architecture

&

Motivation

Figure 2. MDT-ASD channel block diagram

Circuit Architecture & Motivation

- Concern that epitaxial process (low resistivity substrate) can lead to substrate coupling if one is not careful
- Any transients coupled into substrate anywhere can couple back into high gain input stages.
- Guard rings will not prevent this.
- Decided on fully differential architecture all the way through.
- Two independent low input impedance transimpedance preamplifiers (Idea comes from **Mitch Newcomer** who used this configuration for Straw Tube Tracker [I think?] in bipolar process)
- Motivation for this configuration was to render any input pickup differential, and thus cancelled by subsequent stages.
- This feature works "sort of" but less effective than one might think. To be fully effective, input external (R & C) loads on both preamps would have to be the same. Actually, they are very different.
- Differential feature makes for easy DC balance after preamps

Circuit Architecture & Motivation (continued)

- < 15ns peaking time, fast fall time → Transimpedance amplifier ie not a charge integrator
- Multiple gain/shaping stages with pole/zero networks to yield final bipolar shaping
- All control logic (real time) is hand built and fully differential.
- All real time logic traces (differential) sit over bypassed well to further isolate from substrate.
- Result was that no digital substrate coupling was ever observed.