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The ATLAS Detector at the LHC

• LHC: pp collider with design
√

s = 14TeV and L = 1.5 · 1034 cm12s−1

• end of 2009 first physics run with
√

s ' 10TeV to accumulate first ∼ 200pb−1

Calorimeter

Muon Spectrometer

Toroid Magnets

Tracking Detector

Solenoid Magnet

Length: 44 m

Height:  25 m
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Commissioning the ATLAS Liquid Argon Calorimeter

• commissioning in different steps:

1. checks of installed hardware
– finding dead and faulty channels, on detector, in readout-, calibration- or

HV - system
– understanding pedestal and noise in readout, testing the calibration chain
– filling data base with calibration constants
– first electronics performance checks (signal shape, timing)

2. cosmic rays as first physics signal
– test trigger and read-out system
– signal studies to validate and improve pulse shape prediction

3. proceed with single beam events
– signal studies with beam halo muons
– response and homogeneity studies in ’beam-splash’ events

4. physics commissioning as final goal: ’rediscovering the SM’ e.g. top quark
and use known W boson mass for calibration

Emanuel Rauter Rigorosum 4

http://www.cern.ch/erauter


LAr Signal and Electronics Calibration

 !" Liquid ionization calorimetry    !"!#!$!% Shapers The preampli*ers are fol.lowed by shapers located close to the feedthroughs7The purpose of the shapers is to attenuate the longdecay of the signal from the detector 9Fig7 ;7;<= andto minimize the sum of the electronic noise 9whichscales as t   !p = and the pile.up noise 9which scalesas t" !p =7 This leads to optimized peaking times be.tween ;< ns and @< ns for the various calorimetersat full luminosity 9see Fig7 ;7;B=7 For operation atlower luminosityC a multiple sampling technique canbe used to provide a noise response which is close tothat given by the optimum shaping EF;G7 Combining I@ samplesC the electronic noise can be reduced andthe total noise decreases as 9L!B< #=  $7
Figure ;7;<J Drift current versus time for an ionizationcalorimeter 0a12 and response of a bipolar shaper withtp0!1 8 9: ns 0b1; The dots indicate the beam crossings;The shapers have a CRRC! architectureC whichproduces a bipolar signal7 Each channel has twooutputs to accommodate the BL.bit dynamic rangewith negligible noise contribution from the followingstagesJ a high gain 9! BL= for up to B<< GeV and alow gain 9! B= for higher energy7Eight channels would be packaged into a mono.lithic circuitC using bipolar technology to optimizepower dissipation and noise7 A F.bit switch allowshardware compensation 9to within B ns= for peakingtime inaccuracy due to the large tolerances 9!  <P=on the passive components of the process7 The powerdissipation is B<< mWRbi.channel for a F V output9unloaded= and the input noise is B7@ nVRpHz7 TwodiTerent types of shapers 9NPN and PNP= are neededfor the cryogenic preampli*ers and for the <T pream.pli*ersC as the signal polarities are opposite7 The

shapers for the cryogenic preampli*ers also requirea precise @< W input impedance to terminate the ca.bles7
Figure ;7;BJ Electronic2 pile?up and total noise contribu?tion to an e;m; shower at " 8 : at low and high luminosityversus the shaper peaking timeThe shapers are AC coupled to the rest of the read.out 9see Section ;7L= in order to avoid baseline shiftsand low frequency noise7 They also provide an analogsum for the LVLB trigger7 !"!#! PresamplerThe front.end electronics for the presampler is similarto that of the *rst compartment of the e7m7 calorime.terC but a smaller dynamic range is required 9$ B;bits=7 This allows the signals from the presampler tobe transferred out of the cryostat with analog opti.cal linksC giving a more compact solution than coppercables7GaAs preampli*ers mounted on the presamplerinside the liquid argon amplify the detector cur.rent and drive light emitting diodes 9LEDs= situ.ated on the same electronics board7 The powerdissipation for this front.end is less than  < mW7The LEDs are packed in arrays of at least BL ele.ments attached together on a BL.*bre ribbonC madeof ;<< %m silica core multimode *bres7 The *bresexit the cryostat via high density warm feedthroughs9B< *bresRmm!= EF G7 The ribbons are connected toremote receivers consisting of PIN diodes arrays fol.lowed by high speedC low noise 9$ B pARpHz= currentpreampli*ers feeding shapers similar to those used for
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• drifting ionisation electrons result in a triangular current signal
• energy reconstructed from samples of shaped signal with optimal filtering
• need knowledge of signal shape for reconstruction with OF

Ecell = FµA→MeV · FDAC→µA
1

Mphys
Mcali

∑Mramps
i=1 RiADC→DAC

[∑Nsamples
j=1 aj (sj − p)

]j

• exponential calibration pulse to imitate physics signal
• sampling fraction from test beam measurements
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Cosmic Commissioning: Signal Studies
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• trigger on LAr, TILE and minimum-bias scintillators

• residual of predicted vs measured shape:

– normalise data shape with use of reconstructed amplitude and time
– compute residual and give feedback to prediction e.g. adjust drift time
– study distorted and pathological channels
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First Data from LHC: Single Beam Events
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• single beam hitting collimator on C-side about 140 m before the IP

– accumulated cell energy in η − φ plane of HEC for 86 single beam events,
some cells with several TeV

– periodic structure is due to the material in the endcap toroid magnets
– decrease for high φ, i.e. the lower half of the HEC caused by additional

material below beam pipe
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Top Quark Physics

• after indirect constraints from LEP discovered in 1995 at TeVatron as 6th quark,
prepare study to re-discover it in ATLAS (physics commissioning)

• production at TeVatron mainly via quark annihilation and in future at LHC mainly
via gluon fusion
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• for pp at LHC σt̄t(14TeV) = 880 pb decreases to σt̄t(10TeV) = 400 pb

⇒ LHC produces high rates of top quarks, high statistics will be available

• ’special role’ in SM

– ’heavy as gold’
– due to its short lifetime the top decays before hadronisation
– reconstructing top decay allows for measurement of its weak decay
– top mass together with W mass provide indirect constraints on Higgs boson

mass
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Top Quark Reconstruction

• t̄t decay channels classified according to the decays of the W bosons

– all leptonic
– all hadronic
– lepton plus jets

t

b

W
l(q)

νl(q´)
• golden channel: lepton plus jets

– leptonic side offers clean trigger signature
– hadronic side is fully reconstructable
– in this analysis only muon or electron as lepton

• simulated data corresponding to 145 pb−1 with t̄t signal and following
background processes:

– top mass dependent: all hadronic channel, single top
– inclusive Z → `` and W → `ν plus jets
– di-boson events
– QCD (not fully simulated but extrapolated from PYTHIA )
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Event Selection

• Trigger: electron or muon with ET of more than 20 GeV

• lepton selection i.e electron or muon:

– pT of more than 20 GeV
– |η| < 2.5
– isolation: additional transverse energy in ∆R = 0.2 < 6 GeV

• jet selection:

– (Anti)Kt4-Algorithm on local hadron calibrated topo clusters
– pT of more than 20 GeV
– |η| < 2.5
– minimal distance to leptons ∆R = 0.4
– NO b-tagging used

• event selection cuts:

– exactly one lepton
– more than 4 jets, 3 of them with pT above 40 GeV
– Emiss

T above 20 GeV
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Top Mass Measurement

top quark reconstruction:
• take jet triplet maximising pT as

top candidate
• method chooses the correct

combination in 25% of the cases
• fit invariant mass spectrum with

convolution of Gaussian and
Chebychev polynomial

• example plot in electron channel
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W boson reconstruction:
• boost to top CM system and take

the closest two jets in triplet as W
boson candidate

• fit invariant mass spectrum with
convolution of Gaussian and
Chebychev polynomial
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Iterative In-Situ Calibration in W→ jj

• exploit precise knowledge of the W boson mass

– jet angle is measured better than jet energy, hence in the the massless limit
for the invariant mass we derive scale factors for the jet energy as
K = MPDG

W /Mjj

– simplified rescaling results in an effective jet energy scale
– rescaling is repeated in I iterations resulting in a final scale factor as

Ki =
∏

j=1,I K j
i

• fill jets constituting the W boson candidate into histograms, according to their
energy

• apply fitting function and fill MPDG
W /M reco

W into a calibration histogram

• apply calibration to jets and iterate the method until it converges
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Application of Iterative In-Situ Calibration
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• final calibration function closely follows the first iteration, but due to higher
order effects is not the same

• method results in an effective calibration
• application of the calibration method within statistical errors, i.e. initial

calibration was good w.r.t. precision achievable with available statistics
• in case of a deliberate rescaling of jet energy, the jet energy scale is

recovered to a good extent by the method
⇒ reduction of systematic error
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Systematic Effects

mean of Gaussian fit [GeV]

before in-situ calibration after in-situ calibration

standard analysis

mt electron 166.55 ± 2.38 167.22 ± 2.36

mt muon 166.78 ± 2.99 166.90 ± 2.69

∆mean (µ) ∆mean (µ)

jet energy scale ±5%

∆mt electron ± 7.96 - 1.60

∆mt muon ± 8.21 - 1.19

b jet energy scale ±5%

∆mt electron ± 2.42 ± 1.89

∆mt muon ± 2.45 ± 2.54

physics background variation ±50%

∆mt electron ± 0.14 ± 0.02

∆mt muon ± 0.57 ± 0.08

fit uncertainty

∆mt + 3.2 ± 2.7

• application of the in-situ calibration largely
recovers lJES, bJES not to same extent

– lJES: ∆mtop no longer symmetric,
shift in one direction⇒ method is
over-compensating

• rescaling physics background showed no
significant effect as main contribution is
combinatorial

• Gaussian part of the fitting function shifted to
lower values

– reason: it absorbs a significant part of
combinatorial peaking background

– shift not known precisely⇒ not
applied as correction but treated as
systematic

– for samples with higher statistics:
Chebychev polynomial of 7th order
significantly improves the situation

• jet algorithm: change from Kt4 to AntiKt4 as
typical ∆mtop = ±3.96 GeV
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Analysis Results

• simulated data with an integrated luminosity of 145 pb−1, the top quark mass was
reconstructed in the lepton plus jets decay channel using local hadron calibrated
Kt4 jets resulting in a top mass e.g. in the electron channel

– before in-situ calibration:
melectron

t = 166.55± (2.38)stat (+9.58
−9.10 )syst GeV

– after in-situ calibration:
melectron

t = 167.22± (2.36)stat (+3.9
−2.49)syst GeV

• compatible with input top mass value of 172.5 GeV.

• before the application of the in-situ calibration, the dominant errors are the light jet
energy scale and the combinatorial background

• after application of the in-situ calibration, only the latter remains dominant

• with samples of higher statistics the combinatorial background is expected to
decrease and the fitting procedure is expected to become more stable
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Conclusion

• Commissioning

– shape studies showed reasonable prediction in first iteration

– some distorted shapes remain to be understood

– beam splash events are a good test bench for homogeneity studies, e.g. of
the HV response

• top quark analysis for early data without b-tagging

– in-situ calibration decreases systematic due to JES

– method suffers from combinatorial background

– fitting procedure is expected to become more stable with higher statistics

– method needs to be calibrated with MC samples at different mass-points

– if b-tagging information is available, other reconstruction methods will be
more promising
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Backup Slides
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Cosmic Commissioning: Signal Studies
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• shape:
- scale predicted shape to reconstructed amplitude and time
- understand differences to prediction
- e.g. HV or pad displacement
- look at timing w.r.t. TILE calorimeter - X-talk studies
- understand distortions
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Systematic Effects
• jet energy scale re-scaled by±5%

⇒ reconstructed top mass follows both, W mass only lJES variation
⇒ lJES: ∆mtop of±7.96 (±8.21) GeV in the electron (muon) channel
⇒ bJES: ∆mtop of±2.42 (±2.45) GeV in the electron (muon) channel

• application of the in-situ calibration largely recovers lJES, bJES not to same extent

– lJES: ∆mtop no longer symmetric, shift of -1.60 (-1.19) GeV in the electron (muon) channel
⇒ method is over-compensating

– bJES: remaining ∆mtop of±1.89 (±2.54) GeV in the electron (muon) channel.

• Gaussian part of the fitting function shifted to lower values

– reason: it absorbs a significant part of combinatorial peaking background
– shift is known to 1 σ only, not applied as correction, but treated as systematic, positive error of 3 GeV.
– samples with higher statistics: a Chebychev polynomial of 7th order significantly improves the situation

not applicable here, as fit then follows the statistical fluctuations in the tail

• jet algorithm: change from Kt4 to AntiKt4 as typical ∆mtop = ±3.96 GeV

• rescaling physics background by 50%(150%) showed no significant effect as main contribution is
combinatorial
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