Top Quark Mass Measurement: Prospects of Commissioning Studies for early LHC Data in the ATLAS Detector

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Technische Universität München

Outline

- the ATLAS detector at the LHC
- commissioning the Liquid Argon Calorimeter
 - electronics calibration
 - cosmic and single beam commissioning
- top quark mass reconstruction
 - physics process and background samples
 - event selection
 - top quark reconstruction
 - iterative in-situ calibration
 - systematics and results
- conclusion

The ATLAS Detector at the LHC

- LHC: pp collider with design $\sqrt{s} = 14$ TeV and $\mathscr{L} = 1.5 \cdot 10^{34}$ cm¹²s⁻¹
- end of 2009 first physics run with $\sqrt{s} \simeq 10 \text{TeV}$ to accumulate first $\sim 200 \text{pb}^{-1}$

Commissioning the ATLAS Liquid Argon Calorimeter

- commissioning in different steps:
 - 1. checks of installed hardware
 - finding dead and faulty channels, on detector, in readout-, calibration- or HV - system
 - understanding pedestal and noise in readout, testing the calibration chain
 - filling data base with calibration constants
 - first electronics performance checks (signal shape, timing)
 - 2. cosmic rays as first physics signal
 - test trigger and read-out system
 - signal studies to validate and improve pulse shape prediction
 - 3. proceed with single beam events
 - signal studies with beam halo muons
 - response and homogeneity studies in 'beam-splash' events
 - 4. physics commissioning as final goal: 'rediscovering the SM' e.g. top quark and use known W boson mass for calibration

LAr Signal and Electronics Calibration

- drifting ionisation electrons result in a triangular current signal
- energy reconstructed from samples of shaped signal with optimal filtering
- need knowledge of signal shape for reconstruction with OF

$$E_{cell} = F_{\mu A \to MeV} \cdot F_{DAC \to \mu A} \frac{1}{\frac{M_{phys}}{M_{cali}}} \sum_{i=1}^{M_{ramps}} R_{iADC \to DAC} \left[\sum_{j=1}^{N_{samples}} a_j(s_j - p) \right]^{J}$$

- exponential calibration pulse to imitate physics signal
- sampling fraction from test beam measurements

Cosmic Commissioning: Signal Studies

- trigger on LAr, TILE and minimum-bias scintillators
- residual of predicted vs measured shape:
 - normalise data shape with use of reconstructed amplitude and time
 - compute residual and give feedback to prediction e.g. adjust drift time
 - study distorted and pathological channels

First Data from LHC: Single Beam Events

- single beam hitting collimator on C-side about 140 m before the IP
 - accumulated cell energy in $\eta \phi$ plane of HEC for 86 single beam events, some cells with several TeV
 - periodic structure is due to the material in the endcap toroid magnets
 - decrease for high ϕ , i.e. the lower half of the HEC caused by additional material below beam pipe

Emanuel Rauter

Top Quark Physics

- after indirect constraints from LEP discovered in 1995 at TeVatron as 6th quark, prepare study to re-discover it in ATLAS (physics commissioning)
- production at TeVatron mainly via quark annihilation and in future at LHC mainly via gluon fusion

- for pp at LHC $\sigma_{t\bar{t}}(14\text{TeV}) = 880 \text{ pb}$ decreases to $\sigma_{t\bar{t}}(10\text{TeV}) = 400 \text{ pb}$
- \Rightarrow LHC produces high rates of top quarks, high statistics will be available
- 'special role' in SM
 - 'heavy as gold'
 - due to its short lifetime the top decays before hadronisation
 - reconstructing top decay allows for measurement of its weak decay
 - top mass together with W mass provide indirect constraints on Higgs boson mass

Emanuel Rauter

Top Quark Reconstruction

- tt decay channels classified according to the decays of the W bosons
 - all leptonic
 - all hadronic
 - lepton plus jets
- golden channel: lepton plus jets
 - leptonic side offers clean trigger signature
 - hadronic side is fully reconstructable
 - in this analysis only muon or electron as lepton
- simulated data corresponding to 145 pb⁻¹ with tt signal and following background processes:
 - top mass dependent: all hadronic channel, single top
 - inclusive $Z \rightarrow \ell \ell$ and $W \rightarrow \ell \nu$ plus jets
 - di-boson events
 - QCD (not fully simulated but extrapolated from PYTHIA)

Emanuel Rauter

Event Selection

- Trigger: electron or muon with E_{T} of more than 20 GeV
- lepton selection i.e electron or muon:
 - $p_{\rm T}$ of more than 20 GeV
 - $|\eta| < 2.5$
 - isolation: additional transverse energy in $\Delta R = 0.2 < 6 \text{ GeV}$
- jet selection:
 - (Anti)Kt4-Algorithm on local hadron calibrated topo clusters
 - $p_{\rm T}$ of more than 20 GeV
 - $|\eta| < 2.5$
 - minimal distance to leptons $\Delta R = 0.4$
 - NO b-tagging used
- event selection cuts:
 - exactly one lepton
 - more than 4 jets, 3 of them with p_{T} above 40 GeV
 - E_{T}^{miss} above 20 GeV

Top Mass Measurement

top quark reconstruction:

- take jet triplet maximising p_T as top candidate
- method chooses the correct combination in 25% of the cases
- fit invariant mass spectrum with convolution of Gaussian and Chebychev polynomial
- example plot in electron channel

W boson reconstruction:

- boost to top CM system and take the closest two jets in triplet as W boson candidate
- fit invariant mass spectrum with convolution of Gaussian and Chebychev polynomial

Emanuel Rauter

Iterative In-Situ Calibration in $W \rightarrow jj$

- exploit precise knowledge of the W boson mass
 - jet angle is measured better than jet energy, hence in the the massless limit for the invariant mass we derive scale factors for the jet energy as $K = M_W^{PDG}/M_{jj}$
 - simplified rescaling results in an effective jet energy scale
 - rescaling is repeated in I iterations resulting in a final scale factor as $K_i = \prod_{j=1,l} K_i^j$
- fill jets constituting the W boson candidate into histograms, according to their energy
- apply fitting function and fill M_W^{PDG}/M_W^{reco} into a calibration histogram
- apply calibration to jets and iterate the method until it converges

Application of Iterative In-Situ Calibration

- final calibration function closely follows the first iteration, but due to higher order effects is not the same
- method results in an effective calibration
- application of the calibration method within statistical errors, i.e. initial calibration was good w.r.t. precision achievable with available statistics
- in case of a deliberate rescaling of jet energy, the jet energy scale is recovered to a good extent by the method
- \Rightarrow reduction of systematic error

Emanuel Rauter

Systematic Effects

	mean of Gaussian fit [GeV]	
	before in-situ calibration	after in-situ calibration
	standard analysis	
m _t electron	166.55 ± 2.38	167.22 ± 2.36
m _t muon	166.78 ± 2.99	166.90 ± 2.69
	Δ mean (μ)	Δ mean (μ)
	jet energy scale $\pm 5\%$	
Δm_t electron	± 7.96	- 1.60
Δm_t muon	± 8.21	- 1.19
	b jet energy scale $\pm 5\%$	
Δm_t electron	± 2.42	± 1.89
Δm_t muon	\pm 2.45	\pm 2.54
	physics background variation $\pm 50\%$	
Δm_t electron	± 0.14	± 0.02
Δm_t muon	± 0.57	\pm 0.08
	fit uncertainty	
Δm _t	+ 3.2 ± 2.7	

- application of the in-situ calibration largely recovers IJES, bJES not to same extent
 - IJES: Δm_{top} no longer symmetric, shift in one direction \Rightarrow method is over-compensating
- rescaling physics background showed no significant effect as main contribution is combinatorial
- Gaussian part of the fitting function shifted to lower values
 - reason: it absorbs a significant part of combinatorial peaking background
 - shift not known precisely ⇒ not applied as correction but treated as systematic
 - for samples with higher statistics:
 Chebychev polynomial of 7th order significantly improves the situation
- jet algorithm: change from Kt4 to AntiKt4 as typical $\Delta m_{top} = \pm 3.96$ GeV

- simulated data with an integrated luminosity of 145 pb⁻¹, the top quark mass was reconstructed in the lepton plus jets decay channel using local hadron calibrated Kt4 jets resulting in a top mass e.g. in the electron channel
 - before in-situ calibration:

 $m_t^{electron} = 166.55 \pm (2.38)_{stat} (^{+9.58}_{-9.10})_{syst} \text{ GeV}$

- after in-situ calibration: $m_t^{electron} = 167.22 \pm (2.36)_{stat} (^{+3.9}_{-2.49})_{syst} \text{ GeV}$
- compatible with input top mass value of 172.5 GeV.
- before the application of the in-situ calibration, the dominant errors are the light jet energy scale and the combinatorial background
- after application of the in-situ calibration, only the latter remains dominant
- with samples of higher statistics the combinatorial background is expected to decrease and the fitting procedure is expected to become more stable

Conclusion

- Commissioning
 - shape studies showed reasonable prediction in first iteration
 - some distorted shapes remain to be understood
 - beam splash events are a good test bench for homogeneity studies, e.g. of the HV response
- top quark analysis for early data without b-tagging
 - in-situ calibration decreases systematic due to JES
 - method suffers from combinatorial background
 - fitting procedure is expected to become more stable with higher statistics
 - method needs to be calibrated with MC samples at different mass-points
 - if b-tagging information is available, other reconstruction methods will be more promising

Backup Slides

Cosmic Commissioning: Signal Studies

- shape:
 - scale predicted shape to reconstructed amplitude and time
 - understand differences to prediction
 - e.g. HV or pad displacement
 - look at timing w.r.t. TILE calorimeter X-talk studies
 - understand distortions

Systematic Effects

- jet energy scale re-scaled by $\pm 5\%$
 - \Rightarrow reconstructed top mass follows both, W mass only IJES variation
 - \Rightarrow IJES: Δm_{top} of \pm 7.96 (\pm 8.21) GeV in the electron (muon) channel
 - \Rightarrow bJES: Δm_{top} of \pm 2.42 (\pm 2.45) GeV in the electron (muon) channel
- application of the in-situ calibration largely recovers IJES, bJES not to same extent
 - IJES: Δm_{top} no longer symmetric, shift of -1.60 (-1.19) GeV in the electron (muon) channel
 - \Rightarrow method is over-compensating
 - bJES: remaining Δm_{top} of ±1.89 (±2.54) GeV in the electron (muon) channel.
- Gaussian part of the fitting function shifted to lower values
 - reason: it absorbs a significant part of combinatorial peaking background
 - shift is known to 1 σ only, not applied as correction, but treated as systematic, positive error of 3 GeV.
 - samples with higher statistics: a Chebychev polynomial of 7th order significantly improves the situation not applicable here, as fit then follows the statistical fluctuations in the tail
- jet algorithm: change from Kt4 to AntiKt4 as typical $\Delta m_{top} = \pm 3.96$ GeV
- rescaling physics background by 50%(150%) showed no significant effect as main contribution is combinatorial